本翻譯僅作學術交流用,無商業意圖,請勿轉載,如有疑議問請來信
研究發現,大腦胰島素阻抗是阿茲海默症的核心特徵,與認知衰退密切相關。經FDA核准的糖尿病藥物GLP-1類似物,如Exenatide和Liraglutide,有望改善大腦胰島素敏感性,減少病理變化,成為阿茲海默症早期治療的新希望。
Brain insulin resistance in Alzheimer’s disease and its potential treatment with GLP-1 analogs
阿茲海默症中的大腦胰島素阻抗及其使用 GLP-1 類似物的潛在治療策略。
Talbot K. Brain insulin resistance in Alzheimer’s disease and its potential treatment with GLP-1 analogs. Neurodegener Dis Manag. 2014;4(1):31-40. doi:10.2217/nmt.13.73
https://pmc.ncbi.nlm.nih.gov/articles/PMC4465775/
Abstract
The prevalence of Alzheimer’s disease is increasing rapidly in the absence of truly effective therapies. A promising strategy for developing such therapies is the treatment of brain insulin resistance, a common and early feature of Alzheimer’s disease, closely tied to cognitive decline and capable of promoting many biological abnormalities in the disorder. The proximal cause of brain insulin resistance appears to be neuronal elevation in the serine phosphorylation of IRS-1, most likely due to amyloid-β-triggered microglial release of proinflammatory cytokines. Preclinically, the first line of defense is behavior-lowering peripheral insulin resistance (e.g., physical exercise and a Mediterranean diet supplemented with foods rich in flavonoids, curcumin and ω-3 fatty acids). More potent remediation is required, however, at clinical stages. Fortunately, the US FDA-approved antidiabetics exenatide (Byetta®; Amylin Pharmaceuticals, Inc., CA, USA) and liraglutide (Victoza®; Novo Nordisk A/S, Bagsvaerd, Denmark) are showing much promise in reducing Alzheimer’s disease pathology and in restoring normal brain insulin responsiveness and cognitive function.
摘要
阿茲海默症的盛行率在缺乏真正有效療法的情況下正迅速增加。一個有潛力的治療策略是針對大腦胰島素阻抗進行治療,這是阿茲海默症的一個常見且早期特徵,與認知功能衰退密切相關,並能促進該疾病中的多種生物異常。大腦胰島素阻抗的主要原因似乎是神經元中胰島素受體底物-1(IRS-1)絲氨酸磷酸化水平升高,這很可能是由類澱粉蛋白 β 觸發小膠質細胞釋放促炎細胞激素所致。在臨床前階段,降低周邊胰島素阻抗的第一道防線包括運動和富含類黃酮、薑黃素及 ω-3 脂肪酸的地中海飲食。然而,在臨床階段,則需要更強效的干預措施。值得慶幸的是,美國 FDA 核准的抗糖尿病藥物艾塞那肽(Byetta®;Amylin Pharmaceuticals, Inc., 美國加州)和利拉魯肽(Victoza®;Novo Nordisk A/S, 丹麥 Bagsvaerd)在減少阿茲海默症病理、恢復大腦對胰島素的正常反應及改善認知功能方面展現出極大的潛力。
直到最近,阿茲海默症(AD)被定義為一種與大腦前額葉中異常高密度的類澱粉蛋白 β(Aβ)斑塊和神經纖維糾結相關的神經退化性失智症。因此,該疾病被視為失智症的一種表現。然而,現今對阿茲海默症的定義更加廣泛,涵蓋了逐漸導致失智的潛在病理生理過程[1,2]。在數十年的時間裡,阿茲海默症的病理變化分為三個階段[3,4]:第一階段是臨床前期,表現為輕微的行為症狀[2,5];第二階段是前驅期,即由阿茲海默症引起的輕度認知障礙(MCI),患者出現明顯但尚未達到癱瘓程度的症狀[6,7];第三階段是阿茲海默症引起的失智症[4,8]。這最後一個階段是人類最具破壞性的疾病之一,最終會使患者失去自我認知、無法自理,甚至無法辨識或與他人溝通。這種失智症最常在 65 歲或以上的年齡段出現,但在較為罕見的家族性病例中,可能早在 30 歲左右就發病[3]。
阿茲海默症失智症是所有神經退化性失智症中最常見的一種,因其對全球公共衛生構成巨大風險而備受關注[9,10]。然而,目前尚缺乏有效的治療方法。儘管已有超過 100 種針對 AD 的藥物被提出並進行了測試,大多數旨在降低大腦中 Aβ 水平,但在診斷後的一年內,這些藥物的效果僅有輕微改善[11,12]。如果這種情況持續下去,預計到 2050 年,僅美國就將有至少 1,380 萬人罹患阿茲海默症失智症,相關的醫療費用將高達 1.2 兆美元[3]。
因此,在未來十年內開發新的阿茲海默症治療方法已刻不容緩[13]。目前開發中最有前景的療法之一是針對大腦胰島素阻抗(即神經元對細胞外胰島素的反應降低)的治療,這是阿茲海默症患者(無論是否患有糖尿病)中常見且早期的主要特徵[14,15]。本綜述將討論大腦胰島素阻抗的重要性、本質及其使用一類相對較新的抗糖尿病藥物進行潛在治療的可能性。
阿茲海默症中大腦胰島素阻抗的重要性
胰島素最廣為人知的功能是作為胰臟 β 細胞分泌的荷爾蒙,在進食後血漿葡萄糖濃度升高時釋放。其經典功能包括促進脂肪組織和肌肉組織對葡萄糖的攝取,抑制脂肪組織中游離脂肪酸的釋放,以及抑制肝臟對葡萄糖的產生。然而,胰島素同樣在大腦神經元中合成[16],特別是在成人大腦皮質和海馬迴的許多錐體細胞和顆粒細胞中[17],這些區域的胰島素受體密度相當高[18]。雖然胰臟分泌的胰島素在許多大腦區域以少量通過血腦屏障,並對大腦功能(特別是在下丘腦中)產生作用[19],但下丘腦以外的大部分大腦區域內的胰島素似乎是局部合成的,因為血管性低胰島素血症或高胰島素血症對大腦胰島素總量幾乎沒有影響[20]。因此,下丘腦以外的大腦胰島素阻抗主要反映對內源性胰島素(而非胰臟胰島素)反應的降低。
與周邊組織不同,大腦中的胰島素並不調控細胞對葡萄糖的攝取[14]。然而,胰島素在大腦中具有許多其他重要功能。在大腦中,胰島素支持多種在阿茲海默症中被破壞的功能,包括調節腦血流量、炎症反應、氧化壓力、類澱粉蛋白 β(Aβ)的清除、tau 蛋白的磷酸化、細胞凋亡、脂質代謝、神經傳導物質受體的運輸、突觸可塑性及記憶形成[21,22]。因此,大腦胰島素阻抗可能導致或加劇阿茲海默症病理及其臨床症狀。由於這些原因,大腦胰島素阻抗的發展速度可能在很大程度上決定阿茲海默症進展的速度。
阿茲海默症中大腦胰島素阻抗的本質
雖然大腦胰島素阻抗並不影響神經元對葡萄糖的攝取,但其在阿茲海默症(AD)中的機制與第二型糖尿病(T2D)中肌肉組織的胰島素阻抗相似[14]。在這兩種情況下,胰島素對特定訊息傳遞途徑的活化能力顯著下降。在這條訊息傳遞途徑中(圖1),胰島素與細胞表面的胰島素受體(IR)結合,活化細胞內的胰島素受體底物-1(IRS-1),進而活化磷脂酰肌醇-3-激酶(PI3K),再活化蛋白激酶 B(Akt),最終調控 Akt 的多種下游靶點,包括哺乳動物雷帕黴素靶蛋白(mTOR)[14,23]。
由於大腦中的 IRS-1 位於神經元而非神經膠質細胞上[14,24],因此上述訊息傳遞途徑中的大腦胰島素阻抗主要是一種神經元現象。此外,大腦中還存在另一種 IRS 異構體(IRS-2),但它並不在生理劑量的胰島素作用下介導胰島素訊號傳遞[14]。相反,IRS-2 在這些劑量下主要介導類胰島素生長因子-1(IGF-1)訊號傳遞[14]。
圖1. 阿茲海默症中神經元胰島素訊號傳遞途徑的阻抗及其最可能的異常機制當胰島素與神經元胰島素受體(IR)的α 鏈結合時,會觸發受體內部β 鏈的酪氨酸磷酸化(pY)。活化後的 IR 會結合並對胰島素受體底物-1(IRS-1)進行酪氨酸磷酸化,進而啟動磷脂酰肌醇-3-激酶(PI3K),隨後活化蛋白激酶 B(Akt),最終調控多種下游訊號分子。
(A–G) 以下步驟展示了阿茲海默症(AD)中抑制該訊號途徑的可能機制:
(A) 類澱粉蛋白 β(Aβ)寡聚體和原纖維原會活化小膠質細胞。
(B) 小膠質細胞隨後分泌多種促炎細胞激素,包括 IL-1β、IL-6 和 TNF-α。
(C) 這些細胞激素透過神經元上的受體,活化三種主要的 IRS-1 絲氨酸激酶:JNK、IKK 和 ERK。
(D) 這些激酶會在 IRS-1 上的多個位點進行絲氨酸磷酸化,包括 S312、S616 和/或 S636/639(在齧齒動物中分別為 S307、S612 和 S632/635)。在本綜述中,為簡單起見,將 S636/639 統稱為 S636。這種異常高水平的絲氨酸磷酸化在阿茲海默症患者的大腦錐體細胞中尤其明顯,並抑制 IRS-1:
(E) 與上游的 IR 結合
(F) 與下游的 PI3K 結合
這些作用抑制了胰島素訊號向下游靶點(如 GSK-3 和 mTOR 複合體1)的傳遞。
(G) IRS-1 的絲氨酸磷酸化還可能促進其隔離和/或降解。
(E–G) 這三個事件最終導致胰島素阻抗,進而削弱大腦對胰島素的正常反應。此外,胰島素阻抗已知會減少細胞外 Aβ 的清除[90],這可能會透過上述步驟引發進一步的胰島素阻抗,形成一個惡性循環。
縮寫:
Aβ: 類澱粉蛋白 β
IR: 胰島素受體
pY: 酪氨酸磷酸化
最早顯示阿茲海默症(AD)患者大腦可能存在胰島素阻抗的證據,來自於對大腦皮質和海馬迴(後者包括海馬體、齒狀回和下托回)基礎特性的屍檢研究。這些研究發現,AD 患者的腦組織表現出胰島素結合減少[25]、胰島素受體(IR)活化水平降低[26],以及在已知抑制胰島素訊號傳遞的位點上,IRS-1 絲氨酸磷酸化水平增加[14,27]。
然而,直到最近才有直接證據顯示,AD 患者的大腦確實存在胰島素阻抗。我們的研究小組透過離體刺激實驗證實了這一點[14]。我們將生理劑量的胰島素(1 nM)應用於 AD 失智症患者和健康對照組(相同性別、相似年齡,且在屍檢後約 6 小時內取樣)的腦組織,並排除了有糖尿病病史的病例,以確保大腦對胰島素的異常反應是阿茲海默症的普遍特徵,而非糖尿病的影響。
在我們所研究的所有腦區域(包括海馬迴、前額皮質和小腦皮質[14,28]),與健康腦組織相比,AD 腦組織對胰島素的反應明顯減弱,這是通過檢測胰島素訊號傳遞分子的酪氨酸或絲氨酸磷酸化水平(pY 或 pS),以及這些分子間的結合情況來評估的。
在海馬迴中,與健康對照組相比,AD 組織的胰島素訊號傳遞表現出以下異常(圖2)[14]:
- 胰島素受體(IR)活化(pY)降低 29–34%
- IRS-1 活化(pY)降低 90%
- PI3K 與 IRS-1 的結合 降低 96%
- Akt 活化(pS)降低 89%
- mTOR 活化(pS)降低 74%
在這條訊號傳遞途徑中,IRS-1 是第一個顯示嚴重功能障礙的分子,因此被認為是 AD 大腦胰島素阻抗的核心因素。
即使將胰島素劑量增加到 10 nM(這可能超過安全劑量範圍,即使是透過鼻內胰島素給藥),也無法顯著改善腦組織的反應性,顯示出大腦胰島素阻抗在 AD 中的嚴重性與頑固性。
圖2. 阿茲海默症患者海馬迴胰島素阻抗的生理學證據(與年齡及性別匹配的健康對照組比較)使用低死後時間間隔(約 6 小時)的組織,測試 IR–IRS-1–PI3K–Akt–mTOR 訊息傳遞途徑中,對 1–10 nM 胰島素的反應。圖表中的每個柱狀圖顯示在相同診斷組別中,與未接觸胰島素時相比,訊號分子活化或招募的平均百分比增加(±標準誤)。結果顯示,在 (A) IR 的活化和 (B) IRS-1 招募至 IR 的反應性降低,但這種減少的幅度遠低於 (C) IRS-1 總活化、(D) PI3K 調節次單元招募至 IRS-1、(E) Akt 在 S473 位點的活化,或 (F) mTOR 在 S2448 位點的活化。
我們後續的離體刺激研究顯示,來自非糖尿病且患有輕度認知障礙(MCI)個體的海馬迴區域存在較輕微但顯著的大腦胰島素阻抗現象 [Wang H-Y 等人,〈Liraglutide markedly reduces hippocampal insulin resistance in APP/PS1 mice and MCI cases〉(2014,稿件準備中)],而這種現象往往會進展為阿茲海默症(AD)失智症 [29]。因此,大腦胰島素阻抗似乎是阿茲海默症發病機制中的早期特徵。我們進一步發現,在所研究的非糖尿病 MCI 和 AD 失智症病例中,有極高比例顯示出大腦胰島素阻抗,這表明即使在沒有糖尿病的情況下,這也是阿茲海默症的一個普遍特徵 [14]。
根據我們在海馬迴區域的離體刺激研究,阿茲海默症中的大腦胰島素阻抗伴隨著大腦類胰島素生長因子-1(IGF-1)阻抗(即 IRS-2 訊息傳遞受損)[14]。與胰島素阻抗不同,IGF-1 阻抗即使在激素受體的層級上也非常嚴重。這一現象的重要性尚待進一步釐清。
腦部胰島素抗性成因
許多因素被提出來解釋阿茲海默症(AD)患者大腦中胰島素訊號傳遞減少的現象。最常被提及的原因包括從腦脊液檢測中估算的外分泌胰島素減少[30]、胰島素受體(IR)的總量[26]或細胞表面表達量[27,31]減少,以及胰島素受體對胰島素的親和力降低[25]。然而,也有理由質疑這些是否為造成AD大腦胰島素訊號減弱的主要因素。例如,腦脊液中的胰島素缺乏在AD患者中並不明確,因為有相反的研究結果[32,33]。同樣,使用年齡匹配的對照組的研究未發現AD大腦組織中的總IR含量缺乏[14,15,27,34,35],且細胞分餾技術也未顯示這些組織中細胞表面IR的缺失[14]。儘管在AD大腦組織中胰島素與IR的結合可能有所減少[25],但即使在AD癡呆症病例的海馬結構中,胰島素仍能激活IR的催化區域,達到正常水準的71-74%[13]。如前所述,AD大腦中胰島素反應性顯著降低的部位是在IR下游,首先是IRS-1,在海馬結構中,胰島素只能激活IRS-1約正常水準的10%[14]。
因此,AD中腦部胰島素訊號減少的最可能原因是由於功能失常的IRS-1所導致的腦部胰島素抗性。這可能反映了Aβ誘導的神經膠質細胞分泌促發炎細胞因子(圖1)。在AD的早期異常之一是可溶性Aβ的升高[36],其中的單體會聚集成寡聚物,這些寡聚物最終形成纖維,進而形成澱粉樣斑塊或澱粉樣小球[37,38]。在AD的早期[39],Aβ寡聚物和初期纖維(即前纖維)會激活小膠質細胞,導致其分泌促發炎細胞因子,如IL-1、IL-6和TNF-α[40]。這種小膠質細胞的激活可能在AD的發病機制中扮演關鍵角色,因為近期的研究發現,通過敲除一種編碼小膠質細胞受體的基因(即NOD-like receptor 3),這些受體能夠感知包括Aβ在內的發炎病原,能夠防止AD病理和認知缺陷的發生[41]。通過神經元受體,小膠質細胞分泌的IL-1、IL-6和TNF-α會激活IRS-1的絲氨酸激酶,這些激酶包括IKK、JNK和Erk2[13]。因此,Aβ寡聚物被施加到神經元培養物或腦室時,會顯著增加IRS-1絲氨酸磷酸化(IRS-1 pS),特別是在S312、S616和/或S636等位點(在啮齿動物中分別為S307、S612和S632)(圖1)[42,43]。
在AD病例中,IRS-1 pS的升高主要出現在大腦皮層和海馬結構,並且被認為是AD中IRS-1功能失常的主要原因[14,27]。由於這種磷酸化會抑制胰島素誘導的受體激活向下游分子的傳遞,因此這是外周組織胰島素抗性的一個已知原因,特別是在肌肉組織中[44]。在AD大腦中似乎也存在相同的情況,其中胰島素誘導的IRS-1激活在IRS-1 pS616和IRS-1 pS636水準顯著升高的組織中持續減少,因此這些磷酸化位點可能是腦部胰島素抗性的生物標誌物[14]。預期的是,這些候選生物標誌物的水準與Aβ寡聚斑塊的負荷有顯著相關,並且與認知能力的測量(包括情景記憶和工作記憶)呈高度負相關[14]。
因此,由Aβ誘導的促發炎過程導致的持續性神經元IRS-1 pS升高,可能是解釋AD中腦部胰島素抗性和認知缺陷的最可能原因。這也解釋了為什麼由肥胖和/或2型糖尿病(T2D)引起的外周胰島素抗性會加劇AD中的腦部胰島素抗性[15]以及在AD動物模型中[45]。肥胖和T2D實際上是AD的風險因素[46],並且與升高的血管促發炎細胞因子水平有關[47,48]。特別是在AD中,由於腦血管受損,這些細胞因子可以越過血腦屏障[49],並像小膠質細胞衍生的細胞因子一樣激活IRS-1絲氨酸激酶。外周胰島素抗性還可能通過減少大腦Aβ的清除來提高大腦IRS-1 pS,因為胰島素有助於促進肝臟對血漿Aβ的清除[50],而干擾此過程會損害大腦對這種肽的清除[51]。
減緩與年齡相關的大腦胰島素抗性增加
在美國,45至64歲之間,前期糖尿病[52]和2型糖尿病(T2D)[53]的患病率急劇上升,顯示中年時期開始外周胰島素抗性急劇上升。正如前述原因所示,這一現象可能會促進大腦胰島素抗性,我們的研究結果也支持這一觀點:即使在沒有T2D或認知衰退的情況下,大腦中的IRS-1 pS616水準也從中年到老年顯著上升。因此,特別是從中年開始,繼續(或採取)已知能降低外周胰島素抗性並減少進展為輕度認知障礙(MCI)的風險是非常重要的,因為MCI會顯著提高AD癡呆症的風險[29]。
為達到這些目標,最有效的生活方式改變包括減少多餘體重、定期運動以及遵循由Estruch等人[54]所指定的地中海飲食,並補充其他能降低外周胰島素抗性、減少大腦Aβ病理並改善認知和IRS-1 pS水準的營養素[55]。這些額外的營養素包括藍莓和綠茶中的類黃酮、香料薑黃中的薑黃素,以及富含Ω-3脂肪酸的脂肪魚(如鮭魚)中的二十二碳六烯酸[55]。
治療阿茲海默症中的大腦胰島素抗性
儘管減重、運動和改善飲食可能有助於減緩阿茲海默症(AD)臨床階段的進展,甚至在輕度認知障礙(MCI)中減輕症狀的嚴重性[56–59],但隨機臨床試驗未能提供一致的證據,表明這些生活方式改變能顯著減慢AD癡呆症或MCI的認知衰退[52,53,60]。在AD的這些階段,僅僅減少外周胰島素抗性是無效的,臨床研究已記錄了許多2型糖尿病(T2D)治療無法減少AD風險或改善AD癡呆症的認知,包括外周給藥的胰島素、二甲雙胍、磺脲類藥物和噻唑烷二酮類藥物,如羅格列酮和吡格列酮[61,62]。噻唑烷二酮類藥物也因其在前期糖尿病或T2D患者中提高心衰竭風險而臨床上受到限制[63]。
儘管許多抗糖尿病藥物未能減少AD風險或治療AD認知缺陷,已證實鼻用胰島素能改善MCI和早期AD癡呆症病例的認知[64,65],這表明增強大腦胰島素訊號傳遞仍然是治療AD的一種可行方法。然而,僅使用鼻用胰島素不太可能克服AD中大腦胰島素抗性的程度。上述的T2D藥物可能未能作為AD治療藥物的原因有很多,比如代謝迅速、血腦屏障穿透性差和/或無法減少活體中的神經元胰島素抗性。
幸運的是,抗糖尿病GLP-1類似物/模擬物並不具備這些局限性,因此它們是目前市售藥物中發展為AD治療劑的優先候選藥物[12]。GLP-1本身是兩種著名的腸促胰島素肽之一,因為它們在食物刺激下由腸道分泌,能促使胰臟分泌更多胰島素[66]。像胰島素一樣,GLP-1在大腦中也有生成[67],並且除了胰臟外,還有許多其他功能,包括神經保護[68,69]、促進神經生成[69,70]和增強胰島素訊號傳遞[71,72]。
由於GLP-1會迅速代謝,因此已經開發了耐代謝的類似物來用於治療T2D。其中兩種經美國FDA批准的藥物是艾克那特(exenatide,合成的exendin-4,以Byetta®品牌銷售,Amylin Pharmaceuticals, Inc.,加利福尼亞州,美國)和利拉鲁肽(liraglutide,以Victoza®品牌銷售,Novo Nordisk A/S,丹麥巴格斯沃德)[72,73]。這些藥物能有效減少外周胰島素抗性[72,73],並且具有良好的安全性檔案,低血糖發生率很低[74,75],這是預期中的,因為GLP-1增加的是胰臟對食物刺激的胰島素分泌,而非基礎分泌。少數使用GLP-1類似物的患者發生了胰腺炎,這可能與這些藥物本身針對糖尿病的治療有關,而糖尿病又是胰腺炎的風險因素[74,75]。然而,最近的一項綜合分析發現,GLP-1類似物並未增加胰腺炎的風險[76]。目前需要臨床試驗來確定GLP-1類似物在正常人和T2D患者中引起的減重是否會在AD患者中造成問題[77]。
外周給藥的GLP-1類似物,包括exendin-4和liraglutide,能穿越血腦屏障[70,78],因此能與大腦中廣泛存在的GLP-1受體結合,包括大腦皮層和海馬結構中的金字塔細胞[79]。這些GLP-1類似物對神經元有許多顯著的益處,其中許多可能來自它們能阻止Aβ誘導的神經元胰島素抗性[43]。在AD小鼠模型中,包括老年小鼠,這些藥物能減少Aβ斑塊負荷、阻斷Aβ刺激的炎症反應、促進神經生成、神經元存活和突觸完整性,恢復長期增強作用並減少認知缺陷[43,68–70,80,81]。由於大腦中升高的IRS-1 pS可能是腦部胰島素抗性的主要原因,值得注意的是,exendin-4和liraglutide能減少APP/PS1小鼠模型中IRS-1 pS616和IRS-1 pS636的水準[43,82]。
我們的研究小組最近證明,liraglutide能基本恢復APP/PS1小鼠的大腦胰島素敏感性[83]。通過ex vivo刺激,我們發現這些小鼠在7.5個月時海馬結構的胰島素抗性與老年AD患者的同一大腦區域相同,並且在5個月時開始每日給予liraglutide(25 nmol/kg腹腔注射)2個月後,基本恢復了海馬結構對胰島素的正常反應,特別是在IR-IRS-1-PI3K-Akt途徑中。這種藥物處理先前已被發現能恢復海馬的長期增強作用,並大大改善這一AD動物模型的認知能力,在7個月[80]和14個月[81]時均取得了顯著改善。
我們最近的研究表明,liraglutide在減少MCI病例中的大腦胰島素抗性方面可能非常有效[Wang H-Y等,Liraglutide顯著減少APP/PS1小鼠和MCI病例的海馬胰島素抗性(2014),手稿待出版]。如前所述,MCI病例中該區域的胰島素抗性較AD病例中的同一區域輕微。當MCI病例的海馬結構暴露於100 nM的liraglutide 1小時後,發現該區域對1 nM胰島素的反應顯著增強。事實上,這一處理使非記憶性MCI病例的組織幾乎恢復正常的胰島素反應性,並顯著改善健忘性MCI病例的組織反應性。相同的處理也顯著改善了AD病例的海馬結構胰島素反應性,但反應性仍然遠低於正常水平。
因此,GLP-1類似物在AD的早期臨床階段顯示出作為治療劑的巨大潛力,在大範圍、不可逆的神經退行性病變發生之前進行治療將是最為關鍵的。這使得早期診斷AD引起的MCI顯得尤為重要,現有的PET掃描影像技術已使得這一點變得可能[84]。因此,來自美國和英國最近兩年啟動的GLP-1類似物在MCI病例中的臨床試驗結果[85]備受期待。最近在帕金森病的神經退行性疾病臨床試驗中,首個GLP-1類似物(艾克那特)的認知改善報告讓人充滿希望[86]。如同AD一樣,帕金森病中的癡呆症也與外周胰島素抗性有關[87]。
結論與未來展望
實踐要點
大腦胰島素抗性是阿茲海默症(AD)的顯著特徵。這一現象本身可促進許多AD的神經和認知異常。無論是否有糖尿病病史,AD患者中,大腦胰島素抗性是早期且常見的特徵,並與認知衰退密切相關。
AD中的大腦胰島素抗性是一種神經現象,反映了胰島素受體–IRS-1–PI3K–Akt訊號傳遞途徑各層次的胰島素反應性降低。然而,胰島素反應性的首要下降發生在受體以下,從IRS-1開始。
AD中大腦胰島素抗性的最直接原因似乎是Aβ誘導的小膠質細胞釋放促發炎細胞因子,這些細胞因子通過促進IRS-1的絲氨酸磷酸化來抑制胰島素訊號。
年齡相關的腦部胰島素抗性增加的速率可能是可以減緩的。雖然目前沒有經過驗證的在體內檢測大腦胰島素抗性的方法,但對於那些有外周胰島素抗性(例如,前期糖尿病或2型糖尿病患者[T2D])的人來說,大腦胰島素抗性更可能出現,因為外周胰島素抗性可促進大腦胰島素抗性。因此,前期糖尿病患者應該改變生活方式以降低外周胰島素抗性(例如,減少多餘的體重、定期運動並採用地中海飲食),以避免不僅進展為T2D,還進展至AD的臨床階段。
一旦此疾病的臨床階段出現,生活方式的改變不太可能使大腦胰島素反應性恢復正常。然而,這可以通過兩種經美國FDA批准用於T2D的GLP-1類似物來實現,即艾克那特(Byetta®;Amylin Pharmaceuticals, Inc.,加州,美國)和利拉鲁肽(Victoza®;Novo Nordisk A/S,丹麥巴格斯沃德)。這些藥物在恢復AD輕度認知障礙階段的大腦胰島素反應性方面顯示出希望,但在AD癡呆症中並無效。目前正對這些有前景的藥物進行臨床試驗,專注於輕度認知障礙病例。
參考文獻
- 1.Jack CR, Jr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):257–262. doi: 10.1016/j.jalz.2011.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2▪▪.Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stage of Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association Workgroup. Alzheimers Dement. 2011;7(3):280–292. doi: 10.1016/j.jalz.2011.03.003. Provides a clear explanation of the new definition of Alzheimer’s disease (AD) and its rationale. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement. 2013;9(2):208–245. doi: 10.1016/j.jalz.2013.02.003. [DOI] [PubMed] [Google Scholar]
- 4.Jack CR., Jr Alzheimer’s disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology. 2012;263(2):344–361. doi: 10.1148/radiol.12110433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Langbaum JB, Fleisher AS, Chen K, et al. Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol. 2013;9(7):371–381. doi: 10.1038/nrneurol.2013.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging and Alzheimer’s Association Workgroup. Alzheimers Dement. 2011;7(3):270–279. doi: 10.1016/j.jalz.2011.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Stephan BC, Hunter S, Harris D, et al. The neuropathological profile of mild cognitive impairment (MCI): a systematic review. Mol Psychiatry. 2012;17(11):1056–1076. doi: 10.1038/mp.2011.147. [DOI] [PubMed] [Google Scholar]
- 8.McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging and Alzheimer’s Association Workgroup. Alzheimers Dement. 2011;7(3):263–269. doi: 10.1016/j.jalz.2011.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137–152. doi: 10.1038/nrneurol.2011.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Sosa-Ortiz A, Acosta-Catillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res. 2012;43(8):600–608. doi: 10.1016/j.arcmed.2012.11.003. [DOI] [PubMed] [Google Scholar]
- 11▪.Mullane K, Williams M. Alzheimer’s therapeutics: continued clinical failures question the amyloid hypothesis – but what lies beyond? Biochem Pharmacol. 2013;85(3):289–305. doi: 10.1016/j.bcp.2012.11.014. Comprehensive review of the failures in the search for effective treatments of AD, the reasons for that outcome and potential ways to overcome the problem. [DOI] [PubMed] [Google Scholar]
- 12▪.Corbett A, Pickett J, Burns A. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov. 2012;11(11):833–846. doi: 10.1038/nrd3869. Reports the systematic search of marketed drugs for novel use as AD therapeutic agents, concluding that a high priority should be given to the the antidiabetic GLP-1 analogs. [DOI] [PubMed] [Google Scholar]
- 13.Naylor MD, Karlawish JH, Arnold SE. Advancing Alzheimer’s disease diagnosis, treatment, and care: recommendations from the Ware Invitational Summit. Alzheimers Dement. 2012;8(5):445–452. doi: 10.1016/j.jalz.2012.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14▪▪.Talbot K, Wang H-Y, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122(4):1316–1338. doi: 10.1172/JCI59903. Supplies the first physiological evidence of brain insulin resistance in AD, identifies its likely proximal causes and biomarkers, and establishes that the likely biomarkers are associated with cognitive decline. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Liu Y, Liu F, Grundke-Iqbal I, et al. Deficient brain insulin signalling in Alzheimer’s disease and diabetes. J Pathol. 2011;225(1):54–62. doi: 10.1002/path.2912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Devaskar SU, Giddings SJ, Rajakumar PA, et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem. 1994;269(11):8445–8454. [PubMed] [Google Scholar]
- 17▪▪.Kuwabara T, Kagalwala MN, Onuma Y, et al. Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med. 2011;3(12):742–754. doi: 10.1002/emmm.201100177. Gives a definitive demonstration that insulin is synthesized in the adult mammalian brain, specifically granule and/or pyramidal neurons in the neocortex and hippocampal formation. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Unger J, McNeill TH, Moxley RT, et al. Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience. 1989;31(1):143–157. doi: 10.1016/0306-4522(89)90036-5. [DOI] [PubMed] [Google Scholar]
- 19.Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther. 2012;136(1):82–93. doi: 10.1016/j.pharmthera.2012.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Le Roth D, Hendricks SA, Lesniak MA, et al. Insulin in brain and other extrapancreatic tissues of vertebrates and non-vertebrates. Adv Metab Disord. 1983;10:303–340. doi: 10.1016/b978-0-12-027310-2.50017-7. [DOI] [PubMed] [Google Scholar]
- 21▪▪.Craft S, Cholerton B, Baker LD. Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis. 2013;33(Suppl 1):S263–S275. doi: 10.3233/JAD-2012-129042. Provides the most comprehensive and current review of the role dysfunctional insulin signaling in the brain may play in producing many of the major abnormalities in AD. [DOI] [PubMed] [Google Scholar]
- 22.Ghasemi R, Haeri A, Dargahi L, et al. Insulin in the brain: sources, localization and functions. Mol Neurobiol. 2013;47(1):145–171. doi: 10.1007/s12035-012-8339-9. [DOI] [PubMed] [Google Scholar]
- 23.Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279. doi: 10.1155/2010/476279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Folli F, Bonfanti L, Renard E, et al. Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system. J Neurosci. 1994;14(11):6412–6422. doi: 10.1523/JNEUROSCI.14-11-06412.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Rivera EJ, Goldin A, Fulmer N, et al. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis. 2005;8(3):247–268. doi: 10.3233/jad-2005-8304. [DOI] [PubMed] [Google Scholar]
- 26.Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease – is this Type 3 diabetes? J Alzheimers Dis. 2005;7(1):63–80. doi: 10.3233/jad-2005-7107. [DOI] [PubMed] [Google Scholar]
- 27▪.Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurbiol Aging. 2010;31(2):224–243. doi: 10.1016/j.neurobiolaging.2008.04.002. Reports some of the first clear evidence for brain insulin resistance in AD and for a role of IRS-1 serine phosphorylated insulin (pS) in that phenomenon. [DOI] [PubMed] [Google Scholar]
- 28.Wang H-Y, Bakshi K, Frankfurt M, et al. Reducing amyloid-related Alzheimer’s disease pathogenesis by a small molecule targeting filamin A. J Neurosci. 2012;32(29):9773–9784. doi: 10.1523/JNEUROSCI.0354-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Espinosa A, Alegret M, Valero S, et al. A longitudinal follow-up of 550 mild cognitive impairment patients: evidence for large conversion to dementia rates and detection of major risk factors involved. J Alzheimers Dis. 2013;34(3):769–780. doi: 10.3233/JAD-122002. [DOI] [PubMed] [Google Scholar]
- 30.Craft S, Peskind E, Schwartz MW, et al. Cerebrospinal fluid and plasma levels in Alzheimer’s disease, relationship to severity of dementia and apolipoprotein E genotype. Neurology. 1998;50(1):164–168. doi: 10.1212/wnl.50.1.164. [DOI] [PubMed] [Google Scholar]
- 31.De Felice FG. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest. 2013;123(2):531–539. doi: 10.1172/JCI64595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Fujisawa Y, Sasaki K, Akiyama K. Increased insulin levels after OGTT load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type. Biol Psychiatry. 1991;30(12):1219–1228. doi: 10.1016/0006-3223(91)90158-i. [DOI] [PubMed] [Google Scholar]
- 33.Molina JA, Jiménez-Jiménez FJ, Vargas C, et al. Cerebrospinal fluid levels of insulin in patients with Alzheimer’s disease. Acta Neurol Scand. 2002;106(6):347–350. doi: 10.1034/j.1600-0404.2002.01326.x. [DOI] [PubMed] [Google Scholar]
- 34.Frölich L, Blum-Degen D, Bernstein H-G, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm. 1998;105(4–5):423–438. doi: 10.1007/s007020050068. [DOI] [PubMed] [Google Scholar]
- 35.Ho L, Yemul S, Knable L, et al. Insulin receptor expression and activity in the brains of nondiabetic sporadic Alzheimer’s disease cases. Int J Alzheimers Dis. 2012;2012:321280. doi: 10.1155/2012/321280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Jack CR, Jr, Vemuri P, Wiste HJ, et al. Evidence for ordering of Alzheimer disease biomarkers. Arch Neurol. 2011;68(12):1526–1535. doi: 10.1001/archneurol.2011.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Straub JE, Thirumalai D. Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Ann Rev Phys Chem. 2011;62:437–463. doi: 10.1146/annurev-physchem-032210-103526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Matsumura S, Shinoda K, Yamada M, et al. Two distinct amyloid-β-protein (Aβ) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. J Biol Chem. 2011;286(13):11555–11562. doi: 10.1074/jbc.M110.181313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Ferretti MT, Cuello AC. Does a pro-inflammatory process precede Alzheimer’s disease cognitive impairment. Curr Alzheimer Res. 2011;8(2):164–174. doi: 10.2174/156720511795255982. [DOI] [PubMed] [Google Scholar]
- 40.Heneka MT, O’Banion KO, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm. 2010;117(8):919–947. doi: 10.1007/s00702-010-0438-z. [DOI] [PubMed] [Google Scholar]
- 41▪.Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–678. doi: 10.1038/nature11729. Shows that amyloid-β (Aβ) effects on AD pathology and cognitive deficits in an animal model of AD are dependent on Aβ microglial activation, which results in release of cytokines that others found to activate IRS-1 serine kinases. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Ma Q-L, Yang F, Rosario ER, et al. β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by fatty acids and curcumin. J Neurosci. 2009;29(28):9078–9089. doi: 10.1523/JNEUROSCI.1071-09.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43▪▪.Bomfim TR, Forny-Germano L, Sathler LB, et al. An antidiabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J Clin Invest. 2012;122(4):1339–1353. doi: 10.1172/JCI57256. Demonstrates that Aβ oligomers trigger elevated IRS-1 pS in hippocampal neuron cultures via the cytokine TNF-α and that this effect was blocked by the GLP-1 analog exenatide. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Boura-Halfon S, Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab. 2009;296(4):e581–e591. doi: 10.1152/ajpendo.90437.2008. [DOI] [PubMed] [Google Scholar]
- 45▪▪.Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 2004;18(7):902–904. doi: 10.1096/fj.03-0978fje. Shows that peripheral insulin resistance can induce brain insulin resistance and exacerbate AD pathology and cognitive impairment in an animal model of AD. [DOI] [PubMed] [Google Scholar]
- 46.Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry. 2010;67(6):505–512. doi: 10.1016/j.biopsych.2009.02.013. [DOI] [PubMed] [Google Scholar]
- 47.Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest. 2008;118(9):2992–3002. doi: 10.1172/JCI34260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Akash MS, Rehman K, Chen S. Role of inflammatory mechanism in pathogenesis of Type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–531. doi: 10.1002/jcb.24402. [DOI] [PubMed] [Google Scholar]
- 49.Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood–brain barrier. Neuroimmunomodulation. 2012;19(2):121–130. doi: 10.1159/000330247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Tamaki C, Ohtsuki S, Terasaki T. Insulin facilitates the hepatic clearance of plasma amyloid-β-peptide (1–40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Mol Pharmacol. 2007;72(4):850–855. doi: 10.1124/mol.107.036913. [DOI] [PubMed] [Google Scholar]
- 51.Marques MA, Kulstad JJ, Savard CE. Peripheral amyloid-β levels regulate amyloid-β clearance from the central nervous system. J Alzheimers Dis. 2009;16(2):325–329. doi: 10.3233/JAD-2009-0964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Bullard KM, Saydah SH, Imperatore G, et al. Secular changes in U.S. prediabetes prevalence defined by hemoglobin A1c and fasting plasma glucose: National Health and Nutrition Examination Surveys 1999–2010. Diabetes Care. 2013;36(8):2286–2293. doi: 10.2337/dc12-2563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Cheng YJ, Imperatore G, Geiss LS. Secular changes in the age-specific prevalence of diabetes among U.S. adults, 1988–2010. Diabetes Care. 2013;36(9):2690–2696. doi: 10.2337/dc12-2074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Eng J Med. 2013;368(14):1279–1290. doi: 10.1056/NEJMoa1200303. [DOI] [PubMed] [Google Scholar]
- 55▪.Talbot K. Brain insulin resistance in Alzheimer’s disease and its potential treatment with a Mediterranean diet and GLP-1 analogues. Psychiatr Times. 2013 Reviews the literature on dietary means of lowering peripheral insulin resistance, slowing age-related cognitive decline and protecting against Aβ pathology, including elevations in IRS-1 pS. [Google Scholar]
- 56.Balsomo S, Willardson JM, de Frederico SS, et al. Effectiveness of exercise on cognitive impairment and Alzheimer’s disease. Int J Gen Med. 2013;6:387–391. doi: 10.2147/IJGM.S35315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol Psychiatry. 2013;18(8):864–874. doi: 10.1038/mp.2012.162. [DOI] [PubMed] [Google Scholar]
- 58.Solfrizzi V, Frisardi V, Seripa D, et al. Mediterranean diet in predementia and dementia syndromes. Curr Alzheimer Res. 2011;8(5):520–542. doi: 10.2174/156720511796391809. [DOI] [PubMed] [Google Scholar]
- 59.Cole GM, Ma Q-L, Frautschy SA. Omega-3 fatty acids and dementia. Prostoglandins Leukot Essent Fatty Acids. 2009;81(2–3):213–221. doi: 10.1016/j.plefa.2009.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Gillette-Guyonnet S, Secher M, Vellas B. Nutrition and neurodegeneration: epidemiological evidence and challenges for future research. Brit J Clin Pharmcol. 2013;75(3):738–755. doi: 10.1111/bcp.12058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61▪.Imfeld P, Bodmer M, Jick SS, et al. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc. 2012;60(5):916–921. doi: 10.1111/j.1532-5415.2012.03916.x. Shows that long-term users of many antidiabetics (not including GLP-1 analogs) do not have a reduced risk of developing AD and that long-term use of metformin may actually raise such a risk. [DOI] [PubMed] [Google Scholar]
- 62▪.Miller BW, Willett KC, Desilets AR. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease. Ann Pharmacother. 2011;45(11):1416–1424. doi: 10.1345/aph.1Q238. Reviews studies that tested the effects of the insulin sensitizers rosiglitazone and pioglitazone on AD, and concludes that they have no clear clinical benefit and that they pose safety concerns. [DOI] [PubMed] [Google Scholar]
- 63.Hernandez AV, Usmani A, Rajamanickam A, Moheet A. Thiazolidinediones and risk of heart failure in patients with or at high risk of Type 2 diabetes mellitus. Am J Cardiovasc Drugs. 2011;11(2):115–128. doi: 10.2165/11587580-000000000-00000. [DOI] [PubMed] [Google Scholar]
- 64.Shemesh E, Rudich A, Harman-Boehm I, et al. Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab. 2012;97(2):366–376. doi: 10.1210/jc.2011-1802. [DOI] [PubMed] [Google Scholar]
- 65.Freiherr J, Hallschmid M, Frey WH, 2nd, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013;27(7):505–514. doi: 10.1007/s40263-013-0076-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–837. doi: 10.1016/j.cmet.2013.04.008. [DOI] [PubMed] [Google Scholar]
- 67.Llewellyn-Smith IJ, Reimann F, Gribble FM, Trapp S. Preproglucagon neurons project widely to autonomic control areas. Neuroscience. 2011;180:111–121. doi: 10.1016/j.neuroscience.2011.02.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Brit J Pharmacol. 2012;166(5):1586–1599. doi: 10.1111/j.1476-5381.2012.01971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Duarte AI, Candeias E, Correia SC, et al. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Bicohim Biophys Acta. 2013;1832(4):527–541. doi: 10.1016/j.bbadis.2013.01.008. [DOI] [PubMed] [Google Scholar]
- 70.Hunter K, Hölscher C. Drugs developed to treat diabetes, liraglutide and lixesenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012;13:33. doi: 10.1186/1471-2202-13-33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Gao H, Wang X, Zhang Z, et al. GLP-1 amplifies insulin signaling by upregulation of IRβ, IRS-1, and GLUT4 in 3T3-L1 adipocytes. Endocrine. 2007;32(1):90–95. doi: 10.1007/s12020-007-9011-4. [DOI] [PubMed] [Google Scholar]
- 72▪.Li L, Yang G, Li Q. Exenatide prevents fat-induced insulin resistance and raises adiponectin expression and plasma levels. Diabetes Obes Metab. 2008;10(10):921–930. doi: 10.1111/j.1463-1326.2007.00832.x. Reports laboratory tests on obese rats demonstrating that exenatide significantly reduces peripheral insulin resistance. [DOI] [PubMed] [Google Scholar]
- 73▪.Garber A, Henry R, Ratner R, et al. Liraglutide versus glimepiride for Type 2 diabetes (LEAD-3 Mono): randomized, 52-week, Phase III, double-blind, parallel-treatment trial. Lancet. 2009;373(9662):473–481. doi: 10.1016/S0140-6736(08)61246-5. Reports clinical trial results demonstrating that liraglutide significantly reduces peripheral insulin resistance in early Type 2 diabetics. [DOI] [PubMed] [Google Scholar]
- 74.Boland CL, DeGeeter M, Nuzum DS, Tzefos M. Evaluating second-line treatment options for Type 2 diabetes: focus on secondary effects of GLP-1 agonists and DPP-4 inhibitors. Ann Pharmacother. 2013;47(4):490–505. doi: 10.1345/aph.1R444. [DOI] [PubMed] [Google Scholar]
- 75.Peters KR. Liraglutide for the treatment of Type 2 diabetes: a clinical update. Am J Therap. 2013;20(2):178–188. doi: 10.1097/MJT.0b013e3182204c16. [DOI] [PubMed] [Google Scholar]
- 76.Alves C, Batel-Marques F, Macedo AF. A meta-analysis of serious adverse events reported with exenatide and liraglutide: acute pancreatitis and cancer. Diabetes Res Clin Pract. 2012;98(2):271–284. doi: 10.1016/j.diabres.2012.09.008. [DOI] [PubMed] [Google Scholar]
- 77.Monami M, Dicembrini I, Marchionni N, et al. Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis. Exp Diabetes Res. 2012;344:d7771. doi: 10.1155/2012/672658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Kastin AJ, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Rel Disord. 2003;27(3):313–318. doi: 10.1038/sj.ijo.0802206. [DOI] [PubMed] [Google Scholar]
- 79.Hamilton A, Hölscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. NeuroReport. 2009;20(13):1161–1166. doi: 10.1097/WNR.0b013e32832fbf14. [DOI] [PubMed] [Google Scholar]
- 80▪▪.McClean PL, Parthsarathy V, Faivre E, Hölscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31(17):6587–6594. doi: 10.1523/JNEUROSCI.0529-11.2011. Demonstrates that liraglutide markedly improves many basic pathological features of AD in an animal model of that disorder. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.McLean PL, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology. 2014;76(Pt A):57–67. doi: 10.1016/j.neuropharm.2013.08.005. [DOI] [PubMed] [Google Scholar]
- 82.Long-Smith CM, Manning S, McLean PL, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localization and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromolecular Med. 2013;15(1):102–114. doi: 10.1007/s12017-012-8199-5. [DOI] [PubMed] [Google Scholar]
- 83.Wang H-Y, Stucky A, Kvasic J, et al. The diabetes drug liraglutide ameliorates insulin resistance in the hippocampal formation of the APP/PS1 model of Alzheimer’s disease (AD) Soc Neurosci. 2012:Abstract 749.29. [Google Scholar]
- 84.Villemagne VL, Rowe CC. Long night’s journey into the day: amyloid-β imaging in Alzheimer’s disease. J Alzheimers Dis. 2013;33(Suppl 1):S349–S359. doi: 10.3233/JAD-2012-129034. [DOI] [PubMed] [Google Scholar]
- 85.Hölscher C. Potential role of glucagon-like peptide-1 (GLP-1) in neuroprotection. CNS Drugs. 2012;26(10):871–882. doi: 10.2165/11635890-000000000-00000. [DOI] [PubMed] [Google Scholar]
- 86▪▪.Aviles-Olmos I, Dickson J, Kefalopoulou Z, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123(6):2730–2736. doi: 10.1172/JCI68295. Provides the first clinical evidence that a GLP-1 analog improves cognition in a neurodegenerative disorder. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Bosco D, Plastino M, Cristiano D, et al. Dementia is associated with insulin resistance in patients with Parkinson’s disease. J Neurol Sci. 2012;315(1–2):39–43. doi: 10.1016/j.jns.2011.12.008. [DOI] [PubMed] [Google Scholar]
- 88.Faivre E, Holscher C. Neuroprotective effects of D-Ala2GIP on Alzheimer’s disease biomarkers in an APP/PS1 mouse model. Alzheimer’s Res Ther. 2013;5:20. doi: 10.1186/alzrt174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5:209ra151. doi: 10.1126/scitranslmed.3007218. [DOI] [PubMed] [Google Scholar]
- 90.Zhao W-Q, Lacor PN, Chen H, et al. insulin receptor dysfunction impairs clearance of neurotoxic oligomeric Aβ. J Biol Chem. 2009;284(28):18742–18753. doi: 10.1074/jbc.M109.011015. [DOI] [PMC free article] [PubMed] [Google Scholar]