全球抗生素使用量2000至2015年激增65%:迫切需要全球抗藥性對策

本翻譯僅作學術交流用,無商業意圖,請勿轉載,如有疑議問請來信

從2000至2015年,全球抗生素消耗量增加了65%,達到34.8億定義日劑量(DDD)。這一增長主要由低收入和中等收入國家推動,與國內生產總值(GDP)增長相關。對最後手段藥物的使用急劇增加,尤其令人擔憂。如果不改變現有政策,預計到2030年,全球抗生素消耗量可能比2015年高出200%。

2000年至2015年間抗生素消耗的全球增加和地理收斂

Global increase and geographic convergence in antibiotic consumption between 2000 and 2015

Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463-E3470. doi:10.1073/pnas.1717295115

https://pubmed.ncbi.nlm.nih.gov/29581252/

Abstract

Tracking antibiotic consumption patterns over time and across countries could inform policies to optimize antibiotic prescribing and minimize antibiotic resistance, such as setting and enforcing per capita consumption targets or aiding investments in alternatives to antibiotics. In this study, we analyzed the trends and drivers of antibiotic consumption from 2000 to 2015 in 76 countries and projected total global antibiotic consumption through 2030. Between 2000 and 2015, antibiotic consumption, expressed in defined daily doses (DDD), increased 65% (21.1-34.8 billion DDDs), and the antibiotic consumption rate increased 39% (11.3-15.7 DDDs per 1,000 inhabitants per day). The increase was driven by low- and middle-income countries (LMICs), where rising consumption was correlated with gross domestic product per capita (GDPPC) growth (P = 0.004). In high-income countries (HICs), although overall consumption increased modestly, DDDs per 1,000 inhabitants per day fell 4%, and there was no correlation with GDPPC. Of particular concern was the rapid increase in the use of last-resort compounds, both in HICs and LMICs, such as glycylcyclines, oxazolidinones, carbapenems, and polymyxins. Projections of global antibiotic consumption in 2030, assuming no policy changes, were up to 200% higher than the 42 billion DDDs estimated in 2015. Although antibiotic consumption rates in most LMICs remain lower than in HICs despite higher bacterial disease burden, consumption in LMICs is rapidly converging to rates similar to HICs. Reducing global consumption is critical for reducing the threat of antibiotic resistance, but reduction efforts must balance access limitations in LMICs and take account of local and global resistance patterns.

Keywords: antibiotic stewardship; antibiotics; antimicrobial resistance; defined daily doses; low-income countries.

摘要

追蹤抗生素消費模式在不同國家隨時間的變化,可以為制定政策提供資訊,以優化抗生素的處方並最小化抗生素抗藥性,例如設定和執行人均消費目標或資助抗生素替代品的投資。在這項研究中,我們分析了2000年至2015年76個國家抗生素消費的趨勢和驅動因素,並預測了2030年全球總抗生素消費量。在2000年至2015年間,抗生素消費量(以定義每日劑量(DDD)表示)增加了65%(從21.1億增至34.8億DDD),抗生素消費率增加了39%(從每千居民每天11.3增至15.7DDD)。這一增加主要由低收入和中等收入國家(LMICs)推動,其中消費增加與人均國內生產總值(GDPPC)增長相關(P = 0.004)。在高收入國家(HICs),儘管總體消費量略有增加,但每千居民每天的DDD

關鍵詞:抗生素管理;抗生素;抗微生物抗藥性;定義每日劑量;低收入國家。

圖1

全球抗生素消費量按國家分布:2000-2015年。(A)2000年至2015年間,各國抗生素消費率的變化,以每千居民每天DDD計算。對於越南、孟加拉國、荷蘭和克羅地亞,變化量從2005年開始計算,對於阿爾及利亞則從2002年開始計算,因為這些年份之前這些國家的數據不可用。(B)2015年各國抗生素消費率,以每千居民每天DDD計算。數據來源:IQVIA MIDAS,2000-2015年,IQVIA Inc. 版權所有(https://www.iqvia.com/solutions/commercialization/geographies/midas)。

圖2

全球按國家收入分類的抗生素消費量:2000-2015年。(A)圖表顯示低收入和中等收入國家(LMICs)的抗生素消費率(每千居民每天DDD)急劇增加,而高收入國家(HICs)的消費率則幾乎保持不變。然而,如B所示,許多LMICs較大的人口規模導致總體抗生素消費量(DDD)在LMICs更高,即使它們的消費率(因而人均使用量)較低。在B中,每個條形圖反映了該國或國家群在指定年份的總消費量。數據來源:IQVIA MIDAS,2000-2015年,IQVIA Inc. 版權所有(https://www.iqvia.com/solutions/commercialization/geographies/midas)。

圖3

在每千居民每天DDD計算的情況下,高收入國家(HICs)、中等收入國家-上中等(LMICs-UM)和中等收入國家-下中等(LMICs-LM)四種最常使用的治療類抗生素的消費率。(A)廣譜青霉素,對應於解剖治療化學(ATC)分類中的延伸譜青霉素(J01CA),不包括羧苄西林。(B)頭孢菌素,對應於ATC分類代碼J01DB、J01DC、J01DD和J01DE,涵蓋四代頭孢菌素。(C)大環內酯類,對應於ATC分類中的大環內酯、林可黴素和鏈黴素(J01F)。(D)喹諾酮,對應於ATC分類中的喹諾酮抗菌劑(J01M)。數據來源:IQVIA MIDAS,2000-2015年,IQVIA Inc. 版權所有(https://www.iqvia.com/solutions/commercialization/geographies/midas)。

圖4

在每千居民每天DDD計算的情況下,高收入國家(HICs)、中等收入國家-上中等(LMICs-UM)和中等收入國家-下中等(LMICs-LM)使用新型及最後手段抗生素的消費率。(A)甘胺環素,對應於ATC分類中的替加環素(J01AA12)。(B)噁唑環酮,對應於ATC分類中的利奈唑胺(J01XX08)和泰地唑胺(J01XX11)。(C)卡巴匹南,對應於ATC分類中的卡巴匹南(J01DH)。(D)多粘菌素,對應於ATC分類中的多粘菌素(J01XB)。數據來源:IQVIA MIDAS,2000-2015年,IQVIA Inc. 版權所有(https://www.iqvia.com/solutions/commercialization/geographies/midas)。

圖5

圖5. 預測的全球總抗生素消費量(數十億DDD):2000-2030年。根據三種情景估算所有國家的全球抗生素消費量(以數十億DDD計算):(i)所有國家繼續按目前的人均消費率消費;(ii)所有國家的消費量繼續按目前的複合年增長率變化;及(iii)所有國家的消費量趨於全球中位數抗生素消費率。這些估算使用了IQVIA MIDAS數據庫中2000-2015年的抗生素使用數據以及世界銀行數據庫2000-2030年的人口估算和預測。數據來源:IQVIA MIDAS,2000-2015年,IQVIA Inc. 版權所有(https://www.iqvia.com/solutions/commercialization/geographies/midas)。

參考資料

    1. Laxminarayan R, et al. Access to effective antimicrobials: A worldwide challenge. Lancet. 2016;387:168–175. – PubMed
    1. Laxminarayan R, et al. Antibiotic resistance: The need for global solutions. Lancet Infect Dis. 2013;13:1057–1098. – PubMed
    1. Lim C, et al. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Elife. 2016;5:e18082. – PMC – PubMed
    1. Malhotra-Kumar S, Lammens C, Coenen S, Van Herck K, Goossens H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: A randomised, double-blind, placebo-controlled study. Lancet. 2007;369:482–490. – PubMed
    1. Fridkin SK, et al. Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Project and the National Nosocomial Infections Surveillance (NNIS) System Hospitals The effect of vancomycin and third-generation cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. adult intensive care units. Ann Intern Med. 2001;135:175–183. – PubMed
    1. Daneman N, et al. Variability in antibiotic use across nursing homes and the risk of antibiotic-related adverse outcomes for individual residents. JAMA Intern Med. 2015;175:1331–1339. – PubMed
    1. Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. BMJ. 2010;340:c2096. – PubMed
    1. Steinke D, Davey P. Association between antibiotic resistance and community prescribing: A critical review of bias and confounding in published studies. Clin Infect Dis. 2001;33(Suppl 3):S193–S205. – PubMed
    1. Goossens H, Ferech M, Vander Stichele R, Elseviers M. ESAC Project Group Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet. 2005;365:579–587. – PubMed
    1. United Nations (2016) Draft political declaration of the high-level meeting of the General Assembly on antimicrobial resistance. Available at https://www.un.org/pga/71/wp-content/uploads/sites/40/2016/09/DGACM_GAEA…. Accessed June 27, 2017.
    1. World Health Organization 2015 Global action plan on antimicrobial resistance. Available at www.who.int/antimicrobial-resistance/publications/global-action-plan/en/. Accessed May 31, 2017.
    1. World Health Organization 2013 Integrated surveillance of antimicrobial resistance. Available at apps.who.int/iris/bitstream/10665/91778/1/9789241506311_eng.pdf. Accessed September 13, 2016.
    1. Collineau L, et al. Guidance on the selection of appropriate indicators for quantification of antimicrobial usage in humans and animals. Zoonoses Public Health. 2017;64:165–184. – PubMed
    1. Versporten A, et al. WHO/Europe-ESAC Project Group Antibiotic use in Eastern Europe: A cross-national database study in coordination with the WHO Regional Office for Europe. Lancet Infect Dis. 2014;14:381–387. – PubMed
    1. Van Boeckel TP, et al. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14:742–750. – PubMed
    1. Högberg LD, Muller A, Zorzet A, Monnet DL, Cars O. Antibiotic use worldwide. Lancet Infect Dis. 2014;14:1179–1180. – PubMed
    1. Col NF, O’Connor RW. Estimating worldwide current antibiotic usage: Report of Task Force 1. Rev Infect Dis. 1987;9(Suppl 3):S232–S243. – PubMed
    1. World Bank 2017 World DataBank: World Development Indicators. Available at databank.worldbank.org/data/reports.aspx?source=world-development-indica…. Accessed May 31, 2017.
    1. Drukker DM, et al. Testing for serial correlation in linear panel-data models. Stata J. 2003;3:168–177.
    1. Sabuncu E, et al. Significant reduction of antibiotic use in the community after a nationwide campaign in France, 2002-2007. PLoS Med. 2009;6:e1000084. – PMC – PubMed
    1. Institut de veille sanitaire (InVS) et Agence nationale de sécurité du médicament et des produits de santé (ANSM) 2015. Consommation d’antibiotiques et résistance aux antibiotiques en France : Nécessité d’une mobilisation déterminée et durable. Bilan des Données de Surveillance. [Antibiotic consumption and antibiotic resistance in France: The need for a determined and sustainable mobilization. Review of Surveillance Data] (Institut de veille sanitaire, Saint-Maurice, France), pp 1-16. French. – PubMed
    1. Shekarchian S, Schwartz BS, Teherani A, Irby D, Chin-Hong PV. Is it time for a coordinated and longitudinal approach to antibiotic stewardship education? Clin Infect Dis. 2016;63:848–849. – PMC – PubMed
    1. Alirol E, Getaz L, Stoll B, Chappuis F, Loutan L. Urbanisation and infectious diseases in a globalised world. Lancet Infect Dis. 2011;11:131–141. – PMC – PubMed
    1. Steele AD, Hay Burgess DC, Diaz Z, Carey ME, Zaidi AKM. Challenges and opportunities for typhoid fever control: A call for coordinated action. Clin Infect Dis. 2016;62(Suppl 1):S4–S8. – PMC – PubMed
    1. Gubler DJ. Dengue, urbanization and globalization: The unholy trinity of the 21(st) century. Trop Med Health. 2011;39(Suppl):3–11. – PMC – PubMed
    1. Weaver SC. Urbanization and geographic expansion of zoonotic arboviral diseases: Mechanisms and potential strategies for prevention. Trends Microbiol. 2013;21:360–363. – PMC – PubMed
    1. Neiderud C-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect Ecol Epidemiol. 2015;5:27060. – PMC – PubMed
    1. Brugha R, Grigg J. Urban air pollution and respiratory infections. Paediatr Respir Rev. 2014;15:194–199. – PubMed
    1. Blommaert A, et al. Determinants of between-country differences in ambulatory antibiotic use and antibiotic resistance in Europe: A longitudinal observational study. J Antimicrob Chemother. 2014;69:535–547. – PubMed
    1. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: A clinical update. Clin Microbiol Rev. 2005;18:657–686. – PMC – PubMed
    1. Kotwani A, Holloway K. Antibiotic prescribing practice for acute, uncomplicated respiratory tract infections in primary care settings in New Delhi, India. Trop Med Int Health. 2014;19:761–768. – PubMed
    1. Gandra S, et al. Trends in antibiotic resistance among major bacterial pathogens isolated from blood cultures tested at a large private laboratory network in India, 2008-2014. Int J Infect Dis. 2016;50:75–82. – PMC – PubMed
    1. Capoor MR, Nair D. Quinolone and cephalosporin resistance in enteric fever. J Glob Infect Dis. 2010;2:258–262. – PMC – PubMed
    1. Johnson AP, Woodford N. Global spread of antibiotic resistance: The example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol. 2013;62:499–513. – PubMed
    1. Liu Y-Y, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–168. – PubMed
    1. Food and Drug Administration 2013 FDA Drug Safety Communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new boxed warning. Available at https://www.fda.gov/drugs/drugsafety/ucm369580.htm. Accessed September 8, 2017.
    1. Senior K. FDA issue linezolid warning. Lancet Infect Dis. 2007;7:310.
    1. Laxminarayan R. Antibiotic effectiveness: Balancing conservation against innovation. Science. 2014;345:1299–1301. – PubMed
    1. Laxminarayan RP, Malani AP, Howard DP, Smith DLP. Extending the Cure: Policy Responses to the Growing Threat of Antibiotic Resistance. Resources for the Future; Washington, DC: 2007.
    1. Nandi A, Megiddo I, Ashok A, Verma A, Laxminarayan R. Reduced burden of childhood diarrheal diseases through increased access to water and sanitation in India: A modeling analysis. Soc Sci Med. 2017;180:181–192. – PubMed
    1. Lawes T, et al. Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated meticillin-resistant Staphylococcus aureus infections across a region of Scotland: A non-linear time-series study. Lancet Infect Dis. 2015;15:1438–1449. – PubMed
    1. Do NTT, et al. Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: A randomised controlled trial. Lancet Glob Health. 2016;4:e633–e641. – PMC – PubMed
    1. Lee GC, et al. Outpatient antibiotic prescribing in the United States: 2000 to 2010. BMC Med. 2014;12:96. – PMC – PubMed
    1. Poehling KA, et al. Population-based impact of pneumococcal conjugate vaccine in young children. Pediatrics. 2004;114:755–761. – PubMed
    1. Bruyndonckx R, et al. Measuring trends of outpatient antibiotic use in Europe: Jointly modelling longitudinal data in defined daily doses and packages. J Antimicrob Chemother. 2014;69:1981–1986. – PubMed
    1. Laxminarayan R, et al. UN high-level meeting on antimicrobials: What do we need? Lancet. 2016;388:218–220. – PubMed
    1. Lenton TM, et al. Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA. 2008;105:1786–1793. – PMC – PubMed