間歇性禁食對前期糖尿病與2型糖尿病患者的體重與心血管健康的積極影響

本翻譯僅作學術交流用,無商業意圖,請勿轉載,如有疑議問請來信

一項綜合分析顯示,間歇性禁食(IF)對前期糖尿病與2型糖尿病患者有顯著的體重減輕效果,並改善若干心血管健康指標。研究發現,IF能有效降低體重、體重指數(BMI)、糖化血紅蛋白(HbA1c)、空腹血糖、總膽固醇和三酸甘油脂,但對脂肪質量、胰島素水平、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)及血壓無顯著影響。與控制飲食(CON)和卡路里限制(CR)相比,IF在體重和BMI上表現更為突出,顯示其在糖尿病預防與治療中的潛力。

The effects of intermittent fasting on body composition and cardiometabolic health in adults with prediabetes or type 2 diabetes: A systematic review and meta-analysis

間歇性禁食對患有前期糖尿病或2型糖尿病的成年人身體組成與心血管代謝健康的影響:系統評價與統合分析

Khalafi M, Habibi Maleki A, Symonds ME, Rosenkranz SK, Rohani H, Ehsanifar M. The effects of intermittent fasting on body composition and cardiometabolic health in adults with prediabetes or type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab. 2024;26(9):3830-3841. doi:10.1111/dom.15730

https://pubmed.ncbi.nlm.nih.gov/38956175/

Abstract

Aim

To perform a meta-analysis to investigate the effects of intermittent fasting (IF), as compared with either a control diet (CON) and/or calorie restriction (CR), on body composition and cardiometabolic health in individuals with prediabetes and type 2 diabetes (T2D).

Methods

PubMed, Web of Science, and Scopus were searched from their inception to March 2024 to identify original randomized trials with parallel or crossover designs that studied the effects of IF on body composition and cardiometabolic health. Weighted mean differences (WMDs) or standardized mean differences with 95% confidence intervals (CIs) were calculated using random-effects models.

Results

Overall, 14 studies involving 1101 adults with prediabetes or T2D were included in the meta-analysis. IF decreased body weight (WMD -4.56 kg [95% CI -6.23 to -2.83]; p = 0.001), body mass index (BMI; WMD -1.99 kg.m2 [95% CI -2.74 to -1.23]; p = 0.001), glycated haemoglobin (HbA1c; WMD -0.81% [95% CI -1.24 to -0.38]; p = 0.001), fasting glucose (WMD -0.36 mmol/L [95% CI -0.63 to -0.09]; p = 0.008), total cholesterol (WMD -0.31 mmol/L [95% CI -0.60 to -0.02]; p = 0.03) and triglycerides (WMD -0.14 mmol/L [95% CI -0.27 to -0.01]; p = 0.02), but did not significantly decrease fat mass, insulin, low-densitiy lipoprotein, high-density lipoprotein, or blood pressure as compared with CON. Furthermore, IF decreased body weight (WMD -1.14 kg [95% CI -1.69 to -0.60]; p = 0.001) and BMI (WMD -0.43 kg.m2 [95% CI -0.58 to -0.27]; p = 0.001), but did not significantly affect fat mass, lean body mass, visceral fat, insulin, HbA1c, lipid profiles or blood pressure.

Conclusion

Intermittent fasting is effective for weight loss and specific cardiometabolic health markers in individuals with prediabetes or T2D. Additionally, IF is associated with a reduction in body weight and BMI compared to CR, without effects on glycaemic markers, lipid profiles or blood pressure.

Keywords: body composition; cardiovascular disease; dietary intervention; dyslipidaemia; insulin resistance; type 2 diabetes.

摘要

目的

進行系統評價與統合分析,探討間歇性禁食(IF)與對照飲食(CON)和/或熱量限制(CR)相比,對患有前期糖尿病和2型糖尿病(T2D)個體的身體組成與心血管代謝健康的影響。

方法

從PubMed、Web of Science和Scopus中檢索,涵蓋其創立至2024年3月的原始隨機對照試驗,研究間歇性禁食對身體組成和心血管代謝健康的影響。使用隨機效應模型計算加權平均差(WMD)或標準化平均差(SMD)及95%置信區間(CI)。

結果

總共有14項研究,涉及1101名患有前期糖尿病或T2D的成年人,納入本次統合分析。結果顯示,間歇性禁食能顯著降低體重(WMD -4.56 kg [95% CI -6.23至-2.83];p = 0.001)、體重指數(BMI;WMD -1.99 kg/m² [95% CI -2.74至-1.23];p = 0.001)、糖化血紅蛋白(HbA1c;WMD -0.81% [95% CI -1.24至-0.38];p = 0.001)、空腹血糖(WMD -0.36 mmol/L [95% CI -0.63至-0.09];p = 0.008)、總膽固醇(WMD -0.31 mmol/L [95% CI -0.60至-0.02];p = 0.03)和三酸甘油酯(WMD -0.14 mmol/L [95% CI -0.27至-0.01];p = 0.02),但與對照飲食相比,並未顯著降低脂肪量、胰島素、低密度脂蛋白、高密度脂蛋白或血壓。此外,間歇性禁食與熱量限制相比,顯著降低體重(WMD -1.14 kg [95% CI -1.69至-0.60];p = 0.001)和BMI(WMD -0.43 kg/m² [95% CI -0.58至-0.27];p = 0.001),但對脂肪量、瘦體重、內臟脂肪、胰島素、HbA1c、脂質檢查或血壓無顯著影響。

結論

間歇性禁食對前期糖尿病或2型糖尿病患者的減重及某些心血管代謝健康指標有效。此外,與熱量限制相比,間歇性禁食與體重和BMI的減少相關,但對血糖指標、脂質檢查或血壓未產生顯著影響。

關鍵字:身體組成;心血管疾病;飲食干預;脂質異常;胰島素抗性;2型糖尿病。

參考文獻

    1. Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988‐2012. JAMA. 2015;314(10):1021‐1029.
    1. Rooney MR, Fang M, Ogurtsova K, et al. Global prevalence of prediabetes. Diabetes Care. 2023;46(7):1388‐1394.
    1. Selvin E, Parrinello CM, Sacks DB, Coresh J. Trends in prevalence and control of diabetes in the United States, 1988–1994 and 1999–2010. Ann Intern Med. 2014;160(8):517‐525.
    1. Stefan N, Fritsche A, Schick F, Häring HU. Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol. 2016;4(9):789‐798.
    1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4‐14.
    1. Huang Y, Cai X, Chen P, et al. Associations of prediabetes with all‐cause and cardiovascular mortality: a meta‐analysis. Ann Med. 2014;46(8):684‐692.
    1. Cai X, Zhang Y, Li M, et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta‐analysis. BMJ. 2020;370:m2297.
    1. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta‐analysis. BMJ. 2016;355:i5953.
    1. Organization, W.H., Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. World Health Organization; 2006.
    1. ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S19‐S40.
    1. Committee, A.D.A.P.P. and A.D.A.P.P. Committee: 2. Classification and diagnosis of diabetes: standards of medical Care in Diabetes—2022. Diabetes Care. 2022;45(Supplement_1):S17‐S38.
    1. Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(Supplement_1):S120‐S143.
    1. Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. The Lancet. 2014;383(9933):1999‐2007.
    1. Evert AB, Dennison M, Gardner CD, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019;42(5):731‐754.
    1. Wing RR, Blair EH, Bononi P, Marcus MD, Watanabe R, Bergman RN. Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients. Diabetes Care. 1994;17(1):30‐36.
    1. Hammer S, Snel M, Lamb HJ, et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol. 2008;52(12):1006‐1012.
    1. Wang Y, Snel M, Jonker JT, et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases plasma CETP and increases apolipoprotein AI levels without improving the cholesterol efflux properties of HDL. Diabetes Care. 2011;34(12):2576‐2580.
    1. Wycherley T et al. Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10(11):1062‐1073.
    1. Heymsfield SB, Harp JB, Reitman ML, et al. Why do obese patients not lose more weight when treated with low‐calorie diets? A mechanistic perspective. Am J Clin Nutr. 2007;85(2):346‐354.
    1. Middleton KR, Anton SD, Perri MG. Long‐term adherence to health behavior change. Am J Lifestyle Med. 2013;7(6):395‐404.
    1. Longo VD, di Tano M, Mattson MP, Guidi N. Intermittent and periodic fasting, longevity and disease. Nat Aging. 2021;1(1):47‐59.
    1. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46‐58.
    1. De Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019;381(26):2541‐2551.
    1. Varady KA, Cienfuegos S, Ezpeleta M, Gabel K. Clinical application of intermittent fasting for weight loss: progress and future directions. Nat Rev Endocrinol. 2022;18(5):309‐321.
    1. Cho Y, Hong N, Kim KW, et al. The effectiveness of intermittent fasting to reduce body mass index and glucose metabolism: a systematic review and meta‐analysis. J Clin Med. 2019;8(10):1645.
    1. Obermayer A, Tripolt NJ, Pferschy PN, et al. Efficacy and safety of intermittent fasting in people with insulin‐treated type 2 diabetes (INTERFAST‐2)—a randomized controlled trial. Diabetes Care. 2023;46(2):463‐468.
    1. Grajower MM, Horne BD. Clinical management of intermittent fasting in patients with diabetes mellitus. Nutrients. 2019;11(4):873.
    1. Santos HO. Intermittent fasting in the management of diabetes: a review of glycemic control and safety. Nutr Rev. 2023:1‐7.
    1. Meng H, Zhu L, Kord‐Varkaneh H, O Santos H, Tinsley GM, Fu P. Effects of intermittent fasting and energy‐restricted diets on lipid profile: a systematic review and meta‐analysis. Nutrition. 2020;77:110801.
    1. Harris L et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta‐analysis. JBI Evid Synthesis. 2018;16(2):507‐547.
    1. Wang X et al. Effects of intermittent fasting diets on plasma concentrations of inflammatory biomarkers: a systematic review and meta‐analysis of randomized controlled trials. Nutrition. 2020;79:110974.
    1. Gu L, Fu R, Hong J, Ni H, Yu K, Lou H. Effects of intermittent fasting in human compared to a non‐intervention diet and caloric restriction: a meta‐analysis of randomized controlled trials. Front Nutr. 2022;9:871682.
    1. Borgundvaag E, Mak J, Kramer CK. Metabolic impact of intermittent fasting in patients with type 2 diabetes mellitus: a systematic review and meta‐analysis of interventional studies. J Clin Endocrinol Metabol. 2021;106(3):902‐911.
    1. Wang X, Li Q, Liu Y, Jiang H, Chen W. Intermittent fasting versus continuous energy‐restricted diet for patients with type 2 diabetes mellitus and metabolic syndrome for glycemic control: a systematic review and meta‐analysis of randomized controlled trials. Diabetes Res Clin Pract. 2021;179:109003.
    1. Hua C et al. Intermittent fasting in weight loss and cardiometabolic risk reduction: a randomized controlled trial. J Nurs Res. 2022;30(1):e185.
    1. He C‐J, Fei YP, Zhu CY, et al. Effects of intermittent compared with continuous energy restriction on blood pressure control in overweight and obese patients with hypertension. Front Cardiovasc Med. 2021;8:750714.
    1. Hegedus E, Vu MH, Salvy SJ, et al. Randomized controlled feasibility trial of late 8‐hour time‐restricted eating for adolescents with type 2 diabetes. J Acad Nutr Dietetics. 2024;124(8):1014‐1028.
    1. Pavlou V, Cienfuegos S, Lin S, et al. Effect of time‐restricted eating on weight loss in adults with type 2 diabetes: a randomized clinical trial. JAMA Netw Open. 2023;6(10):1‐13.
    1. Suthutvoravut U, Anothaisintawee T, Boonmanunt S, et al. Efficacy of time‐restricted eating and behavioral economic intervention in reducing fasting plasma glucose, HbA1c, and Cardiometabolic risk factors in patients with impaired fasting glucose: a randomized controlled trial. Nutrients. 2023;15(19):4233.
    1. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time‐restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27(6):1212‐1221. e3.
    1. Teong XT, Liu K, Vincent AD, et al. Intermittent fasting plus early time‐restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: a randomized controlled trial. Nat Med. 2023;29(4):963‐972.
    1. Yang X, Zhou J, Shao H, et al. Effect of an intermittent calorie‐restricted diet on type 2 diabetes remission: a randomized controlled trial. J Clin Endocrinol Metabol. 2023;108(6):1415‐1424.
    1. Arya S, Kaji AH, Boermeester MA. PRISMA reporting guidelines for meta‐analyses and systematic reviews. JAMA Surg. 2021;156(8):789‐790.
    1. Guo Z, Liu XM, Zhang QX, et al. Influence of consumption of probiotics on the plasma lipid profile: a meta‐analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(11):844‐850.
    1. Kim J, Kim D, Bae HJ, et al. Associations of combined polygenic risk score and glycemic status with atrial fibrillation, coronary artery disease and ischemic stroke. Cardiovasc Diabetol. 2024;23(1):5.
    1. Tufanaru C et al. Fixed or random effects meta‐analysis? Common methodological issues in systematic reviews of effectiveness. JBI Evid Implementation. 2015;13(3):196‐207.
    1. Higgins JP et al. Measuring inconsistency in meta‐analyses. BMJ. 2003;327(7414):557‐560.
    1. Duval S, Tweedie R. Trim and fill: a simple funnel‐plot–based method of testing and adjusting for publication bias in meta‐analysis. Biometrics. 2000;56(2):455‐463.
    1. Williams KV, Mullen ML, Kelley DE, Wing RR. The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes Care. 1998;21(1):2‐8.
    1. Carter S, Clifton PM, Keogh JB. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA Netw Open. 2018;1(3):1‐12.
    1. Che T, Yan C, Tian D, Zhang X, Liu X, Wu Z. Time‐restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: a randomised controlled trial. Nutr Metab. 2021;18:1‐10.
    1. Kahleova H, Belinova L, Malinska H, et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced‐energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia. 2014;57:1552‐1560.
    1. Wing RR, Blair E, Marcus M, Epstein LH, Harvey J. Year‐long weight loss treatment for obese patients with type II diabetes: does including an intermittent very‐low‐calorie diet improve outcome? Am J Med. 1994;97(4):354‐362.
    1. Varady K. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev. 2011;12(7):e593‐e601.
    1. Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annu Rev Nutr. 2017;37:371‐393.
    1. Elortegui Pascual P, Rolands MR, Eldridge AL, et al. A meta‐analysis comparing the effectiveness of alternate day fasting, the 5: 2 diet, and time‐restricted eating for weight loss. Obesity. 2023;31:9‐21.
    1. Yang F, Liu C, Liu X, et al. Effect of epidemic intermittent fasting on cardiometabolic risk factors: a systematic review and meta‐analysis of randomized controlled trials. Front Nutr. 2021;8:669325.
    1. Roman YM, Dominguez MC, Easow TM, Pasupuleti V, White CM, Hernandez AV. Effects of intermittent versus continuous dieting on weight and body composition in obese and overweight people: a systematic review and meta‐analysis of randomized controlled trials. Int J Obes (Lond). 2019;43(10):2017‐2027.
    1. Cioffi I, Evangelista A, Ponzo V, et al. Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta‐analysis of randomized controlled trials. J Transl Med. 2018;16:1‐15.
    1. Enríquez Guerrero A, San Mauro Martín I, Garicano Vilar E, Camina Martín MA. Effectiveness of an intermittent fasting diet versus continuous energy restriction on anthropometric measurements, body composition and lipid profile in overweight and obese adults: a meta‐analysis. Eur J Clin Nutr. 2021;75(7):1024‐1039.
    1. Group, L.A.R. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one‐year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374‐1383.
    1. Wing RR, Lang W, Wadden TA, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34(7):1481‐1486.
    1. Ma Y, Sun L, Mu Z. Network meta‐analysis of three different forms of intermittent energy restrictions for overweight or obese adults. Int J Obes (Lond). 2024;48(1):55‐64.
    1. Alhamdan B et al. Alternate‐day versus daily energy restriction diets: which is more effective for weight loss? A systematic review and meta‐analysis. Obes Sci Pract. 2016;2(3):293‐302.
    1. Janiszewski PM, Ross R. Effects of weight loss among metabolically healthy obese men and women. Diabetes Care. 2010;33(9):1957‐1959.
    1. Goodpaster BH, DeLany JP, Otto AD, et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA. 2010;304(16):1795‐1802.
    1. Delahanty LM, Pan Q, Jablonski KA, et al. Effects of weight loss, weight cycling, and weight loss maintenance on diabetes incidence and change in cardiometabolic traits in the diabetes prevention program. Diabetes Care. 2014;37(10):2738‐2745.
    1. Most J, Gilmore LA, Smith SR, Han H, Ravussin E, Redman LM. Significant improvement in cardiometabolic health in healthy nonobese individuals during caloric restriction‐induced weight loss and weight loss maintenance. Am J Physiol‐Endocrinol Metab. 2018;314(4):E396‐E405.
    1. Fatahi S, Nazary‐Vannani A, Sohouli MH, et al. The effect of fasting and energy restricting diets on markers of glucose and insulin controls: a systematic review and meta‐analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;61(20):3383‐3394.
    1. Wang W, Wei R, Pan Q, Guo L. Beneficial effect of time‐restricted eating on blood pressure: a systematic meta‐analysis and meta‐regression analysis. Nutr Metab. 2022;19(1):77.
    1. Cienfuegos S, Gabel K, Kalam F, et al. Effects of 4‐and 6‐h time‐restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metab. 2020;32(3):366‐378. e3.
    1. van den Burg EL, van Peet PG, Schoonakker MP, van de Haar DE, Numans ME, Pijl H. Metabolic impact of intermittent energy restriction and periodic fasting in patients with type 2 diabetes: a systematic review. Nutr Rev. 2023;81(10):1329‐1350.
    1. Yuan X, Wang J, Yang S, et al. Effect of intermittent fasting diet on glucose and lipid metabolism and insulin resistance in patients with impaired glucose and lipid metabolism: a systematic review and meta‐analysis. Int J Endocrinol. 2022;2022:1‐9.
    1. Muñoz‐Hernández L, Márquez‐López Z, Mehta R, Aguilar‐Salinas CA. Intermittent fasting as part of the management for T2DM: from animal models to human clinical studies. Curr Diab Rep. 2020;20:1‐10.