天然抗氧化劑α-硫辛酸現身:有望成為第二型糖尿病治療新利器

本翻譯僅作學術交流用,無商業意圖,請勿轉載,如有疑議問請來信

α-硫辛酸(ALA)具有抗氧化、抗發炎、促進葡萄糖攝取等多重功效,研究指出可有效改善第二型糖尿病併發症,如神經病變、腎病與視網膜病變。結合生活型態調整與常規治療,ALA 有潛力提升糖尿病患者的整體療效與生活品質。

ALPHA-LIPOIC ACID IN TYPE 2 DIABETES MELLITUS: MECHANISMS, CLINICAL BENEFITS, AND IMPLEMENTATION IN THERAPY

第二型糖尿病中的 α-硫辛酸:機轉、臨床益處與治療應用

B DHARANI*, STEPHY SEBASTIAN, SUBA A
Department of Physiology, A.C.S. Medical College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu, India.
*Corresponding author: B Dharani; Email: doctordharanibhaskaran@gmail.com

https://www.researchgate.net/publication/386532964_ALPHA-LIPOIC_ACID_IN_TYPE_2_DIABETES_MELLITUS_MECHANISMS_CLINICAL_BENEFITS_AND_IMPLEMENTATION_IN_THERAPY

ABSTRACT 摘要

Diabetes Mellitus (DM) encompasses a range of metabolic disorders marked by persistent high blood glucose levels. Type 2 Diabetes Mellitus (T2DM), the more common form of the disease is characterized by insulin resistance and partial insulin deficiency. The primary contributors to mortality and morbidity in diabetes are its vascular complications. Alpha-Lipoic Acid (ALA) is an antioxidant derived from caprylic acid and synthesized within the mitochondria. Extensive research shows that ALA aids in preventing and treating Diabetic Neuropathy (DN), lowers the risk of diabetes in at-risk individuals and is also beneficial for those with impaired glucose tolerance. Therefore, this review article aims to explore the different aspects of ALA and its beneficial effects on individuals with T2DM. A range of articles from databases such as Springer, Wiley, Web of Science, PubMed, Google Scholar, SCOPUS, Embase and Cochrane were examined. References from these articles were also analysed to broaden the search for pertinent reviews. Administering ALA in T2DM was found to have beneficial effects like anti-oxidant, anti-inflammatory, enhance glucose uptake, prevents diabetic neuropathy, neuroprotective, anti-obesity, cardio-protective, reno-protective, prevent diabetic retinopathy, anti-aging and improve metabolic parameters in Polycystic Ovary Syndrome (PCOS). Incorporating ALA into a comprehensive treatment plan, combined with lifestyle changes and standard therapies could improve patient outcome and enhance the quality of life for those managing T2DM and related conditions.

Keywords: Alpha Lipoic Acid, Type 2 Diabetes Mellitus, ALA, Diabetic Neuropathy, Antioxidant, Anti-inflammatory

糖尿病(DM)一種長期血糖特徵代謝疾病群。第二糖尿病(T2DM)常見形式,特徵胰島素阻抗部分胰島素分泌不足。糖尿病死亡率致病主要來源血管併發症。α-辛酸(Alpha-Lipoic Acid,ALA)一種氧化劑,來自辛酸並在體內合成。大量研究指出,ALA 預防治療糖尿病神經病變(DN),降低風險人群罹患糖尿病風險,對於葡萄糖受損益處。因此,本篇綜述探討 ALA 不同面向及其第二糖尿病患者益處。研究檢索 Springer、Wiley、Web of Science、PubMed、Google Scholar、SCOPUS、Embase Cochrane 資料庫中的文獻,分析文獻中的參考資料擴大綜合回顧範圍。研究指出,第二糖尿病使用 ALA 帶來多項益處,包括氧化、發炎、促進葡萄糖攝取、預防糖尿病神經病變、神經保護、肥胖、血管保護、腎臟保護、預防糖尿病視網膜病變、抗老化,改善卵巢症候群(PCOS)代謝參數。ALA 納入綜合治療計畫,結合生活型態改變標準療法,可望改善病患治療結果提升生活品質,對於第二糖尿病相關疾病管理具有臨床意義。

關鍵詞: α-辛酸、第二糖尿病、ALA、糖尿病神經病變、氧化、發炎

INTRODUCTION 

Diabetes mellitus (DM) encompasses a range of metabolic disorders marked by persistent high blood glucose levels which may stem from problems with insulin production, insulin action, or both. The main categories of diabetes include type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes mellitus (GDM). T1DM is an autoimmune disorder in which the body’s immune system targets and destroys the insulin-producing beta cells in the pancreas, resulting in no insulin production. T2DM is the most common type, typically arising in adults but increasingly being identified in younger individuals. It is characterized by insulin resistance and a partial deficiency of insulin often associated with obesity, physical inactivity, and various environmental and genetic factors. GDM develops during pregnancy, resulting in higher blood sugar levels that can affect both the mother and the baby. Insulin is a polypeptide hormone produced by the beta cells in the islets of Langerhans in the pancreas. Its primary roles include regulating blood glucose levels, facilitating the assimilation of glucose, and promoting its utilization within the body.

DM is recognized as one of the most rapidly increasing and prevalent diseases globally. By 2045, it is estimated to impact approximately 693 million adults. The primary contributors to mortality and morbidity in diabetes are its vascular complications, which encompass both macrovascular and microvascular issues. The disease also imposes a substantial economic burden on both developing and developed nations.

Diabetic neuropathy (DN) is a prevalent complication of T2DM and presents in various forms, including symmetric sensorimotor neuropathy, autonomic neuropathy, mononeuropathy, mononeuritis multiplex, polyradiculopathy, and plexopathy. Diabetic symmetric polyneuropathy (DSPN) is estimated to affect 29% of individuals with T1DM and 35% of those with T2DM in Asia, and approximately 30% of the global population with diabetes.

Alpha-lipoic acid (ALA) is an antioxidant derived from caprylic acid and synthesized within the mitochondria. Studies have shown that nutritional supplementation with ALA may be an effective preventive strategy for managing diabetic complications. Research has shown that ALA enhances nitric oxide-mediated endothelium-dependent vasodilation in diabetic patients and improves microcirculation in those with DSPN.

In the 1950s, experimental studies demonstrated that ALA, a naturally occurring compound, could prevent the onset of alloxan diabetes in rats. The use of oral ALA for DN was first reported in the 1960s. Klein et al in 1975 documented the treatment of 100 patients with DN using oral ALA. ALA is a powerful antioxidant utilized in the treatment of DN because it helps prevent neuronal lipid peroxidation. It was found to have anti-diabetic effect which is linked to its partial inhibition of siteI inflammation. Its anti-inflammatory properties are attributed to its capacity to scavenge oxygen radicals and inhibit nitric oxide production.

There is strong research evidence indicating that ALA has beneficial effects in diabetes, especially in the prevention and treatment of DN. It may also aid in preventing diabetes in individuals at risk. The current expert opinions suggest that ALA could be beneficial for patients with impaired glucose tolerance. Therefore, this review article aims to explore the different aspects of ALA and its beneficial effects on individuals with T2DM.

糖尿病(Diabetes Mellitus, DM)一系列長期血糖特徵代謝疾病,可能源於胰島素產生異常、胰島素作用異常,兩者皆有。目前糖尿病主要分為第一糖尿病(T1DM)、第二糖尿病(T2DM)妊娠糖尿病(GDM)三大類。第一糖尿病一種自體免疫疾病,身體免疫系統攻擊破壞胰臟負責製造胰島素β細胞,導致無法產生胰島素。第二糖尿病常見類型,通常現在成年人身上,現在越來越常見年輕族群。特徵胰島素阻抗部分胰島素缺乏,通常肥胖、缺乏運動多種環境遺傳因素有關。妊娠糖尿病發生懷孕期間,導致血糖升高,影響母體胎兒健康。胰島素一種胰臟小島中的β細胞分泌激素,主要功能包括調節血糖濃度、幫助葡萄糖吸收促進體內利用。

糖尿病認為全球增加最快、普遍疾病之一。預估2045年,全球將有69300萬名成人受到影響。糖尿病造成死亡併發症主要因素血管相關問題,包含血管血管併發症。此外,糖尿病也對開發開發中國家造成重大經濟負擔。

糖尿病神經病變(Diabetic Neuropathy, DN)第二糖尿病常見併發症之一,呈現多種型態,包括對稱感覺運動神經病變、自主神經病變、單一神經病變、多發性神經病變、神經病變神經病變等。其中對稱多發性神經病變(DSPN)常見型態,估計亞洲地區29%第一糖尿病患者35%第二糖尿病患者受到影響,全球糖尿病患者中,30%患有此類病變。

**α-辛酸(ALA)**一種辛酸衍生並於體內合成氧化劑。研究顯示,營養補充 ALA 可能是一種有效糖尿病併發症預防策略。ALA 促進氧化氮血管內皮擴張作用,改善糖尿病患者,特別患有對稱多發性神經病變(DSPN)循環功能。

1950 年代實驗研究證實,ALA 作為一種天然化合物,預防罹患alloxan 誘發糖尿病。口服 ALA 用於治療糖尿病神經病變(DN)最早1960 年代報導。1975 年,Klein 記錄口服 ALA 治療 100 DN 病患情形。ALA 一種氧化劑,抑制神經脂質氧化,因此治療 DN 具有重要應用。研究發現,ALA 具有糖尿病作用,與其炎症部位(尤其是 siteI)部分抑制有關。ALA 發炎特性來自清除活性抑制氧化氮產生能力。

大量研究證據指出,ALA 糖尿病,尤其在預防治療糖尿病神經病方面正向效果。可能有助於預防風險人群罹患糖尿病。目前專家觀點認為,ALA 對於葡萄糖受損病患可能具有潛在益處。因此,本篇綜述探討 ALA 各種面向及其第二糖尿病患者正向影響。

METHODS

A range of articles from databases such as Springer, Wiley, Web of Science, PubMed, Google Scholar, SCOPUS, Embase, and Cochrane were examined. References from these articles were also analyzed to broaden the search for pertinent reviews. Each article was reviewed in detail about the significance of their findings.

研究檢索多個資料庫中的文獻,包括 Springer、Wiley、Web of Science、PubMed、Google Scholar、SCOPUS、Embase Cochrane。進一步分析這些文獻中的參考資料,擴大相關綜述搜尋範圍。文章進行詳細審閱,掌握研究結果重要性。

RESULTS AND DISCUSSION
結果與討論

Pathophysiology of type 2 diabetes mellitus
第二型糖尿病的病理生理機轉

T2DM may remain undetected in its early stages due to its gradual progression and often asymptomatic nature, with symptoms sometimes manifesting only as mild hyperglycemia. More noticeable signs such as increased thirst, weight loss, blurred vision, and impaired growth typically emerge later. The development of T2DM is frequently associated with lifestyle issues such as poor diet, aging, physical inactivity, a family history of diabetes, obesity, previous gestational diabetes in women, and related health conditions such as atherosclerosis, hypertension, and dyslipidemia.

第二糖尿病(T2DM)早期可能不易察覺,進展緩慢明顯症狀,表現輕度血糖。明顯症狀口渴增加、體重減輕、視力模糊生長遲緩等,通常疾病後期出現。T2DM 發展生活型態問題有關,例如飲食不良、年齡老化、身體活動不足、糖尿病家族史、肥胖、女性曾有妊娠糖尿病,以及動脈硬化、高血壓異常相關健康問題。


The pathophysiology of T2DM is characterized by both insulin deficiency and insulin resistance. These conditions are associated with elevated inflammatory cytokines in the plasma and high fatty acid levels, which impair glucose transport into target cells, increase fat breakdown, and boost hepatic glucose production. This results in hyperglycemia, which is further exacerbated by excessive glucagon secretion from α cells and insufficient insulin production from β cells of pancreas.

T2DM 病理生理特徵包括胰島素分泌不足胰島素阻抗。這些狀況引起血漿發炎細胞激素增加脂肪酸濃度上升,導致葡萄糖進入目標細胞受阻、脂肪分解增加,以及肝臟葡萄糖產生上升,進而造成血糖。血糖進一步受到胰臟α細胞分泌升高β細胞胰島素分泌不足加劇。


Understanding of T2DM has progressed from identifying a combination of pancreatic β-cell dysfunction with impaired insulin secretion and insulin resistance (IR) to a more comprehensive model that now includes hepatic gluconeogenesis. Recently, the “ominous octet” framework has been introduced, adding factors such as incretin defects, abnormal adipocyte metabolism, increased renal glucose reabsorption, elevated glucagon levels, neurotransmitter imbalances, and disrupted central appetite control. Further refinements with the “dirty dozen” concept, which incorporates additional elements such as dopamine, vitamin D, testosterone, and the renin-angiotensin system thereby offering a more nuanced view of the disease.

T2DM理解β細胞功能障礙胰島素分泌不足加上胰島素阻抗簡單組合,發展肝糖綜合模型。近期提出的「可怕重奏」理論,病因擴展缺陷、脂肪細胞代謝異常、腎臟葡萄糖吸收上升、濃度增加、神經傳導物質中樞食慾控制障礙。後續的「骯髒十二項」概念納入胺、維生素D、素-血管張力系統,提供疾病細緻理解。

Structure, Synthesis & Bioavailability of ALA
ALA 的結構、合成與生體可利用率

ALA plays a crucial role in several enzymatic processes. ALA exists in both R- and S-enantiomeric forms. However, only R-lipoic acid is attached to conserved lysine residues through an amide linkage, making this isoform essential as a cofactor in biological enzymes. ALA functions as a cofactor for the activity of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. It is also essential for the oxidative decarboxylation of pyruvate to acetyl-CoA, a crucial step connecting glycolysis to the citric acid cycle (CAC). Overall bioavailability of ALA can vary depending on whether it is consumed as a free acid or a salt, and whether it is taken with or without a meal. Pharmacokinetically, ALA has an oral bioavailability of about 30% due to its near lability, significant pre-systemic elimination, and hepatic first-pass metabolism.

α-辛酸(ALA)多種酵素反應扮演重要角色。ALA R S 兩種異構物,僅有 R 辛酸透過保守結合,成為生物酵素酶。ALA 丙酮脫氫α-脫氫酵素酶,參與丙酮氧化生成A,這是作用連接檸檬酸循環關鍵步驟。ALA 整體生物利用攝取形式(游離鹽類)、是否食物有所不同。藥物動力學研究顯示口服生物利用約為30%,主要穩定、經過顯著效應肝臟代謝致。

Dietary Intake of ALA
ALA 的膳食攝取來源

ALA can be found in common dietary sources such as muscle meats, kidney, heart, and liver, while smaller quantities are present in fruits and vegetables. Although ALA can be found in normal dietary sources, significant amounts are unlikely to be consumed in a typical diet. Instead, ALA supplements are commonly available in doses between 50 and 600 mg/day, with varying absorption efficiency. Research shows its bioavailability differs from plasma following these supplements.

ALA 日常飲食攝取,例如肌肉肉類、腎臟、心臟肝臟動物來源含量多,水果蔬菜含量微。雖然ALA飲食攝取,然而實際攝取量通常不足,因此營養補充形式提供,每日劑量介於50600毫克,吸收效率因人而異。研究顯示ALA補充血漿生物利用具有變異性。

BENEFICIAL ACTIONS OF ALA IN DIABETES
ALA 在糖尿病中的有益作用

Anti-oxidant effect
抗氧化效果

The oxidized form of lipoic acid (LA) and its reduced form (DHLA) form a redox pair. DHLA has stronger antioxidant properties than LA. DHLA has a redox potential of –320 mV, compared to –240 mV for the reduced form of vitamin C and –220 mV for vitamin E. ALA scavenges various free radicals including superoxide, peroxyl, and hydroxyl radicals. It also regenerates other antioxidants including vitamins C and E, and glutathione. Their functions include neutralizing Reactive Oxygen Species (ROS), regenerating both consumed and endogenous antioxidants such as vitamins C and E, GSH binding metals, and repairing oxidized proteins, regulating gene transcription, and modulating the activation of Nuclear Factor-kappa B (NF-κB).

辛酸(LA)及其還原型(DHLA)構成一對氧化還原對,DHLA 氧化能力LA。氧化還原電位為 –320 mV,相較之下,維生素C還原為 –240 mV,維生素E 為 –220 mV。ALA 清除多種自由基,例如陰離子、自由氫氧自由基,也能再生其他氧化劑維生素C、E肽(GSH)。ALA 作用包括活性氧(ROS)、再生外來氧化劑、金屬離子結合、修復氧化蛋白質、調節基因轉錄抑制 NF-κB 活化等。

Anti-inflammatory effect
抗發炎作用

Reactive Oxygen Species (ROS) and reactive nitrogen species are byproducts of cellular metabolism and can activate prooxidases such as NADPH-oxidase, myeloperoxidase, and nitric oxide synthase. Excess ROS production in diabetes pathogenesis can lead to damage within the host body. Moreover, reactive oxygen and nitrogen species (ROS/RNS) induce oxidative stress by acting as signaling messengers in various cell death pathways, immune activation, and autophagy. Free radicals also can generate secondary radicals, thereby increasing oxidative stress and toxicity. Therefore, it is essential to maintain redox homeostasis to prevent such damage. Redox homeostasis is upheld by an internal defense system that includes enzymes such as superoxide dismutase, catalase, and glutathione peroxidase as well as molecules such as ascorbate, bilirubin, flavonoids, coenzyme Q, and uric acid. ALA is produced within the human body to act as an antioxidant, protecting cells from damage and assisting in the regeneration of other antioxidants such as vitamins C and E. In addition, ALA may lower blood levels of various inflammatory markers such as IL-6 and ICAM-1. The recommended dosage of ALA is 300–600 mg daily and up to 1,200 mg has been tolerated in humans taking 600 mg per day for up to 7 months.

活性氧(ROS)活性氮(RNS)細胞代謝過程中的副產物,活化 NADPH 氧化酶、氧化氧化氮氧化酶。糖尿病患者體內產生過多 ROS,會對身體造成損害。此外,ROS/RNS 還會作為細胞死亡、免疫活化訊息路徑中的信使分子,誘發氧化壓力增加毒性。維持氧化還原平衡防止這些傷害極為重要。人體內部防禦系統,包括酶、過氧化氫氧化酶,以及維生素C、素、類、Q尿酸分子,維持平衡。ALA 人體自行合成,具有氧化能力,保護細胞傷害協助再生其他氧化物維生素CE。此外,ALA 還可降低發炎指標IL-6 ICAM-1。建議每日攝取量300–600毫克,研究顯示每天服用600毫克連續7個月人體受。

Enhance glucose uptake
促進葡萄糖攝取

ALA enhances the expression of glucose transport protein 4 (GLUT4) from its storage site in the Golgi apparatus to the cell membrane, thereby increasing glucose uptake by lowering the number of GLUT4 transporters on the surface. Evidence from cell culture studies supports the involvement of insulin-mediated PI3K activity in ALA-induced glucose uptake, with these being sustained even when PI3K inhibitors are present. Further data and relevant evidence is needed to confirm the role of GLUT4 translocation in improving glucose disposal with ALA administration.

ALA 促進葡萄糖轉運蛋白4(GLUT4)基氏儲存移動細胞膜表面,藉此提升葡萄糖攝取。ALA 降低細胞表面GLUT4 數量,進一步刺激葡萄糖移。細胞培養研究證實過程涉及胰島素PI3K 活性,即使存在 PI3K 抑制劑,ALA 維持效應。然而,尚需更多數據相關證據確認 ALA 是否透過促進 GLUT4 移位改善葡萄糖利用。

Diabetic neuropathy
糖尿病神經病變

When ROS accumulation vastly beyond the capacity of these endogenous defenses occurs, oxidative stress increases. This elevated oxidative stress has been linked to the development of peripheral neuropathy in diabetes.

體內 ROS 累積超過防禦系統所能處理範圍時,氧化壓力便會大幅升高。這種氧化壓力增加糖尿病周邊神經病發展密切關聯。

In 2012, Mijnhout carried out a meta-analysis that analyzed four studies with an overall participant count of 513 patients. The findings revealed that intravenous administration of ALA at one daily dose for 3 weeks significantly reduced the total symptom score (TSS). However, the analysis did not assess the impact of oral ALA. Another study indicated that intravenous ALA administration for 2 weeks led to more favorable results in nerve conduction velocity (NCV) and improved symptoms. The mean reduction in TSS and the treatment of 510 type 2 diabetic patients who had low HbA1c with fewer than 25 non-serious side effects compared favorably with placebo. The findings were comparable with oral ALA group which included 460 diabetic patients with high HbA1c and received active infusion. ALA reduced TSS by 24–25% in both oral and IV groups which was considerably higher than the placebo group.

2012 年,Mijnhout 進行一項四個研究、總共513統合分析,結果顯示,ALA 靜脈注射連續使用三週後,顯著降低症狀評分(TSS)。然而,分析並未評估口服 ALA 效果。另有研究指出,ALA 靜脈注射兩週顯著改善神經傳導速度(NCV)減輕症狀。對於510第二糖尿病HbA1c 較低患者,TSS 顯著下降不良反應少於25例,效果優於安慰劑。結果另一使用口服 ALA 糖尿病患者(460人,HbA1c 較高接受主動治療)相似,口服靜脈注射TSS 降低24–25%,優於安慰組。

Neuroprotection
神經保護作用

ALA was shown to assist in preserving the degeneration of dorsal root ganglion and to protect against myelin degeneration and uncoupling proteins 1 (UCP1). This regulation promotes anti-apoptotic mechanisms in changes causing cell death in neurons.

研究指出,ALA 有助於抑制神經節退化,並能預防變性蛋白1(UCP1)失調。此一調節作用促進細胞機制,減緩導致神經死亡病理變化。

Anti-obesity
抗肥胖作用

A clinical study has found that ALA supplementation can lead to reduction in body weight and BMI among obese individuals. A dosage of 180 mg/day of ALA resulted in modest weight loss among obese individuals. ALA energy elicited a rapid clinical response in obese and pre-obese patients by reducing plasma levels of pro-inflammatory cytokines. Notably, there was a significant decrease in circulating TNF-α levels following treatment. In addition, genes at the central role of IL-6 in mediating inflammatory pathways, like the significant reduction in circulating IL-6 levels post-treatment, is a crucial factor in the clinical improvement of pre-obese and obese patients and in the prevention of chronic diseases.

臨床研究發現,補充ALA有助於減少肥胖體重BMI。每日服用180毫克ALA使肥胖患者出現輕度體重減輕。ALA快速降低肥胖肥胖患者體內發炎細胞激素濃度,特別腫瘤壞死因子α(TNF-α)濃度顯著下降。此外,IL-6作為發炎反應關鍵調節因子,基因表現治療IL-6濃度顯著下降,也對肥胖肥胖患者臨床改善慢性疾病預防具有關鍵作用。

Cardio-protective
心血管保護作用

It has been found that macrophages, smooth muscle cells, and ROS scavenger receptors on monocytes excessively ingest oxidized LDL, leading to lipid buildup and the formation of atherosclerotic plaques. Increased oxidative stress and inflammation generates hydroxyl radicals, peroxides, and superoxides in the endothelium which promotes the progression of cardiovascular diseases. DHLA is noted for its ability to modulate blood lipids, protect against LDL oxidation, and influence hypertension. This suggests that ALA could potentially serve as a supportive agent against cardiovascular diseases (CVD).

研究發現,巨噬細胞、平滑肌細胞ROS清除體會過度攝取氧化密度脂蛋白(LDL),造成脂質堆積動脈形成。氧化壓力發炎會在血管內皮產生氫氧自由基、過氧化物自由基,進一步加速血管疾病進展。還原ALA(DHLA)具有調節脂、保護LDL不被氧化調節高血壓能力,顯示ALA可望作為血管疾病輔助治療劑。

Reno-protective
腎臟保護作用

T2DM is the major cause of chronic kidney disease (CKD). Diabetic kidney disease (DKD) is marked by reduced glomerular filtration, proteinuria, and renal fibrosis. It is well established that mitochondrial dysfunction plays a role in DKD, making them vulnerable to effects of free radicals and combining the condition. Hyperglycemia, ROS, and oxidative stress can lead to significant kidney damage. Evidence suggests that ALA plays a significant role in mitigating these damages through inhibition of oxidative stress, inflammation, and upregulating antioxidant transcription factor nuclear factor erythroid 2–related factor 2 (Nrf2).

第二糖尿病(T2DM)慢性腎臟病(CKD)主要病因。糖尿病腎病(DKD)特徵過濾下降、蛋白尿腎臟纖維化。研究證實,功能障礙DKD扮演重要角色,使更易受到自由損傷。血糖、ROS氧化壓力導致腎臟嚴重損傷。研究顯示,ALA透過抑制氧化壓力發炎反應,調氧化轉錄因子Nrf2達到腎臟保護效果。

Studies have shown that ALA (600 mg/day) alone or in combination with coenzyme Q10 or vitamin E (900–1000 mg/day) and N-acetylcysteine (600–1200 mg/day) may benefit early-stage patients of diabetic nephropathy. These supplements improve kidney function and reduce TGF-β1 expression in mesangial cells. ALA alleviates proteinuria by lowering TGF-β and fibronectin levels. It was found that ALA supports podocyte linkage and adherens junctions through stabilizing p38 MAPK signaling pathways. By targeting NF-κB and reducing the release of inflammatory cytokines, it has been shown that ALA enhances glomerular integrity. Myoinositol oxygenase (MIOX), which is upregulated in DKD, a producer of lipid peroxidation, is widely used as an indicator in ALA nephroprotective studies.

研究指出,每日補充ALA 600毫克,單獨使用搭配Q10維生素E(每日900–1000毫克)N-酸(600–1200毫克),糖尿病腎病早期患者有益。這些補充改善功能,降低細胞TGF-β1表現。ALA 亦可透過抑制TGF-β纖維連接蛋白減少蛋白尿。ALA穩定p38 MAPK訊號通路,進而支持細胞連接黏附連接。ALA亦可抑制NF-κB降低發炎細胞激素釋放,強化結構。氧化酶(MIOX)糖尿病腎病表現上升,脂質氧化產生有關,常被作為ALA保護研究重要指標。

Diabetic retinopathy
糖尿病視網膜病變

In developed countries, the most common and prevalent cause of blindness is due to diabetic retinopathy (DR), especially among working-age adults. Within 5 years of diagnosis, 50% of patients with T2DM might show progression of DR. ALA prevents DR by inhibiting Oxidized Receptor-1, reducing VEGF, and Nrf2 expression, and thereby as well as reducing oxidative stress. It also attenuates nuclear factor-kappa B (NF-κB) and AP-1–associated signaling in retinal ganglion cells. Clinical trials in prediabetic patients and patients with DR have demonstrated that ALA combined with Centrum and vitamins can protect retinal cells and reduce inflammation in diabetic patients.

已開發國家,糖尿病視網膜病變(DR)導致失明常見普遍原因,尤其在工作年齡族群中。診斷五年內,高達50%第二糖尿病患者可能出現DR進展。ALA 透過抑制氧化1(Oxidized Receptor-1)、降低血管內皮生長因子(VEGF)Nrf2表現,進而減少氧化壓力。ALA 抑制視網膜神經節細胞中的NF-κBAP-1訊號傳遞。臨床試驗顯示,ALA 綜合維他命(Centrum)聯合使用保護視網膜細胞降低糖尿病患者發炎反應。

Polycystic ovary syndrome
多囊性卵巢症候群(PCOS)

In polycystic ovary syndrome (PCOS), ALA also reduces oxidative damage and insulin resistance. In a study involving 90 obese patients with PCOS, the combination of ALA (600 mg/day) and myo-inositol (1 mg/day) improved hormonal and metabolic parameters including insulin sensitivity. 12-week supplementation of ALA (600 mg/day) enhances metabolic functions in all PCOS patients, particularly benefiting those at high risk for non-alcoholic fatty liver disease (NAFLD) and predisposed to diabetes.

卵巢症候群(PCOS)中,ALA 同樣具有減少氧化傷害改善胰島素阻抗作用。一項針對90肥胖PCOS患者研究發現,ALA(每日600毫克)醇(每日1毫克)聯合補充改善荷爾蒙代謝參數,包括提升胰島素敏感性。為期12ALA補充(每日600毫克)全面提升PCOS患者代謝功能,特別有助於預防酒精脂肪肝(NAFLD)糖尿病風險族群。

Anti-aging
抗老化

Oxidative stress was found to be the process involved in cellular aging and age-related organ dysfunction. Antioxidants might decrease the likelihood of certain heart conditions and may also offer anti-aging benefits. ALA can target aging pathways in pancreatic islet cells through its antioxidant properties.

研究顯示,氧化壓力細胞老化老化相關器官功能障礙關鍵機制。氧化劑有助於降低心臟疾病發生機率,可能具有抗老功效。ALA 藉由氧化特性,作用細胞老化路徑延緩衰老

Side effects of ALA
ALA 的副作用

Rare instances, also known as insulin autoimmune syndrome (IAS), is characterized by high insulin levels and low plasma glucose in non-diabetic individuals. This rare form of autoimmune hypoglycemia is triggered by sulfhydryl-containing medications that stimulate the production of insulin autoantibodies. In recent studies, ALA has been cited as one of the causative factors of IAS. Consequently, caution is advised when considering ALA supplementation given its association with this condition.

ALA 可能引發罕見不良反應,胰島素自體免疫症候群(IAS),症狀表現為非糖尿病患者體內胰島素濃度升高血糖濃度低。這種自體免疫低血糖藥物誘發,刺激胰島素自體抗體生成。近年研究指出,ALA 可能是引發 IAS 潛在因素,因此補充 ALA 特別謹慎。


Previous studies have shown that doses up to 2400 mg for adults are well tolerated without any adverse effects. However, higher doses may provide only additional nutritional or therapeutic benefits and hence should not be recommended. Daily oral supplementation of 600 mg of ALA during pregnancy has not been associated with adverse effects for either mothers or newborns, but it is strongly advised to avoid use without medical supervision.

過去研究顯示,成人服用最高2400毫克ALA皆無明顯不良反應。劑量未必帶來更多營養療效,因此建議使用。孕期每日補充600毫克口服ALA並未母體新生兒造成不良影響,強烈建議應在醫療專業人員監督使用。


Studies on primates have shown that excessively high doses of ALA can cause hepatic lesions, suggesting that very high intakes over long periods may lead to toxicity. The most common side effect of ALA is gastrointestinal issues, including reactions such as rashes, hives, vomiting, or severe stomach pain. Patients may also experience bloating, diarrhea, and weight loss.

靈長類動物研究顯示,長期過量攝取ALA可能造成損傷,顯示具有潛在毒性。ALA 常見不良反應腸胃不適,包括皮疹、蕁麻疹、嘔吐腹部劇痛。部分患者可能出現腹脹、腹瀉體重下降反應。

Conclusion
結論

This systematic review of ALA has highlighted its various beneficial therapeutic applications in T2DM. ALA represents a multifunctional therapeutic agent supporting redox homeostasis and mitochondrial health in metabolic disease. Figure 1 explains various mechanisms by which ALA exerts its benefits in type 2 diabetes, including improving insulin sensitivity, glucose metabolism, and reducing ROS, TGF-β, and other related inflammatory and fibrotic pathways. Recent studies confirm ALA’s efficacy in preventing or reversing diabetic complications by notably mitigating oxidative stress which plays a pivotal role in T2DM progression. ALA supplementation in combination with other antioxidants (e.g., coenzyme Q10, N-acetylcysteine, or vitamin E) may enhance its therapeutic effects by targeting multiple signaling cascades such as NF-κB, PI3K/Akt, or TGF-β/SMAD, further supporting its role in managing chronic inflammation in T2DM.

系統回顧總結ALA第二糖尿病中的多重治療潛力。ALA 一種多功能治療劑,維持氧化還原平衡、保護健康,改善代謝病症。說明ALA糖尿病發揮功效多種機制,包括提升胰島素敏感性、改善葡萄糖代謝、降低活性氧(ROS)、轉化生長因子β(TGF-β)其他發炎纖維途徑。近期研究證實,ALA預防逆轉糖尿病併發症方面具有療效,主要是因為顯著減輕氧化壓力,氧化壓力T2DM進展關鍵因素。ALA 若與其他氧化劑(Q10、N-維生素E)聯合補充,透過調節訊號傳導途徑NF-κB、PI3K/Akt TGF-β/SMAD,進一步強化慢性發炎控制效益。

圖一:α-硫辛酸於第二型糖尿病中之有益作用摘要

Associated with T2DM, the enhancement of glucose uptake through increased GLUT-4 transporter expression on the cell surface offers a direct benefit for glycemic control, making ALA a valuable adjunct in diabetes management.

第二糖尿病中,ALA 藉由提升細胞表面 GLUT-4 輸送蛋白表現促進葡萄糖攝取,有助於血糖控制,成為糖尿病治療重要輔助因子。

In the realm of T2DM, ALA has demonstrated efficacy in reducing oxidative stress on nerves, preventing apoptosis, and preserving the integrity of DRG. Its neuroprotective properties are bolstered by its ability to regulate proinflammatory cytokines, inhibit NF-κB, and enhance signaling pathways such as TrkA/p75NTR and the p-AKT/AKT pathway, all of which contributes to nerve health and function.

ALA 第二糖尿病領域中,顯示減輕神經氧化壓力、抑制細胞維護神經節(DRG)完整性療效。神經保護作用與其調節發炎細胞激素、抑制NF-κB 促進 TrkA/p75NTR p-AKT/AKT 訊號傳導路徑有關,從而維護神經健康功能。

ALA also shows promise in addressing obesity-related concerns by reducing TNF and IL-6, while its cardioprotective and renoprotective effects, evidenced by decreased LDL oxidation, reduced pro-inflammatory markers, and improved mitochondrial function, highlight its broader therapeutic potential.

ALA 亦可藉由降低腫瘤壞死因子(TNF)細胞素-6(IL-6)改善肥胖相關問題;心臟腎臟保護作用反映LDL氧化減少、發炎指標降低功能改善表現,展現廣泛治療潛力。

Furthermore, its role in mitigating DR through inhibition of specific glycosylation processes and NF-κB underscores its importance in preventing long-term complications. In addition to these benefits, ALA has demonstrated efficacy in reducing oxidative damage and insulin resistance in PCOS, suggesting a versatile role in metabolic disorders beyond diabetes. Its anti-aging properties further complement its therapeutic profile.

此外,ALA 透過抑制特定糖化過程NF-κB 活性緩解糖尿病視網膜病變(DR),凸顯長期併發症預防價值。ALA 證實減少卵巢症候群(PCOS)中的氧化損傷胰島素阻抗,顯示代謝疾病中的廣泛應用潛力;抗老特性治療優勢之一。


While the evidence supporting ALA’s benefits is robust, continued research is essential to fully establish its efficacy, optimal dosing, and long-term safety. Future studies should focus on validating these effects through large-scale, well-designed clinical trials to confirm ALA’s role as a therapeutic adjunct in T2DM. Early treatment regimens integrating ALA into a multi-tiered approach, alongside lifestyle modifications and conventional therapies may enhance patient outcomes and improve quality of life for individuals managing T2DM and its associated conditions.

儘管ALA療效已有強力證據支持,持續研究明確治療效益、最佳劑量長期安全性。未來研究透過大規模、嚴謹設計臨床試驗驗證作用。若能早期治療策略納入ALA,搭配生活型態調整常規療法,有助於提升糖尿病患者治療成效生活品質。

Reference 參考文獻

    • Kosasih FR, Bonavida B. YY1-mediated Regulation of type 2 Diabetes Via Insulin. YY1 in the Control of the Pathogenesis and Drug Resistance of Cancer. Vol. 1. Netherlands: Elsevier; 2021. p. 271–87.

    • Thota S, Akbar A. Insulin. In: StatPearls. Treasure Island, FL: StatPearls; 2024.

    • Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–90. doi:10.1038/s41581-020-0278-5, PMID: 32398868

    • Cho NH, Shaw JE, Karuranga S, Huang Y, Da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. doi:10.1016/j.diabres.2018.02.023, PMID: 29496507

    • Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H, WHO Multinational Study Group. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001;44(Suppl 2):S1421. doi:10.1007/pl00002934, PMID: 11587045

    • Da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T, Zhang P, et al. IDF diabetes atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract. 2016;117:48–54. doi:10.1016/j.diabres.2016.04.016, PMID: 27329022

    • Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol. 2021;17(7):400–20. doi:10.1038/s41574-021-00496-z, PMID: 34050323

    • Malik RA, Andag-Silva A, Dejthevaporn C, Hakim M, Koh JS, Pinzon R, et al. Diagnosing peripheral neuropathy in South-East Asia: A focus on diabetic neuropathy. J Diabetes Investig. 2020;11(5):1097–103. doi:10.1111/jdi.13269, PMID: 32268012

    • Ziegler D, Papanas N, Vinik AI, Shaw JE. Epidemiology of polyneuropathy in diabetes and prediabetes. Handb Clin Neurol. 2014;126:3–22. doi:10.1016/B978-0-444-53480-4.00001-1, PMID: 25410210

    • Hsieh RY, Huang IC, Chen C, Sung JY. Effects of oral alpha-lipoic acid treatment on diabetic polyneuropathy: A meta-analysis and systematic review. Nutrients. 2023;15(16):3634. doi:10.3390/nu15163634, PMID: 37630823

    • Vallianou N, Evangelopoulos A, Koutalas P. Alpha-lipoic acid and diabetic neuropathy. Rev Diabet Stud. 2009;6(4):230–6. doi: 10.1900/RDS.2009.6.230, PMID: 20043035

    • Cutolo E, Reduzzi F. Acido tioctico inibisce l’insorgere del diabete da allossana nel ratto [Thioctic acid inhibition of development of alloxan diabetes in rats]. Boll Soc Ital Biol Sper. 1955;31(11–2):1532–3. PMID: 13329205

    • Sladki E, Maldyk H, Prusinski A. Treatment of polyneuritic complications in diabetes with thioctic acid. Pol Tyg Lek. 1963;18:16–8. PMID: 13989153

    • Klein W. Die Behandlung der Neuropathia diabetica mit oralen Gaben von alpha-Liponsäure [Treatment of diabetic neuropathy with oral alpha-lipoic acid (author’s transl)]. MMW Münch Med Wochenschr. 1975;117(22):957–8. PMID: 807811

    • Fasipe B, Faria A, Laher I. Potential for novel therapeutic uses of alpha lipoic acid. Curr Med Chem. 2023;30(35):3942–54. doi: 10.2174/0929867329666221006115329, PMID: 36201272

    • Faust A, Burkart V, Ulrich H, Weischer CH, Kolb H. Effect of lipoic acid on cyclophosphamide-induced diabetes and insulitis in non-obese diabetic mice. Int J Immunopharmacol. 1994;16(1):61–6. doi: 10.1016/0192-0561(94)90119-8, PMID: 8150556

    • Al-Mosawi A. The use of alpha-lipoic acid supplementation in diabetes: The available evidence. Int J Clin Med Edu Res. 2022;2(1):4–7.

    • Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10(4):174–88. doi: 10.4103/ajm.ajm_53_20, PMID: 33437689

    • Medscape.com. Type 2 Diabetes Mellitus Guidelines; 2024. Available from: https://emedicine.medscape.com/article/117853-guidelines?form=fpf

    • Kesavadev J, Jawad F, Deeb A, Coetzee A, Ansari MA, Shrestha D, et al. Pathophysiology of Type 2 Diabetes. In: The Diabetes Textbook. Cham: Springer International Publishing; 2023. p. 127–42.

    • Yaworsky K, Somwar R, Ramlal T, Tritschler HJ, Klip A. Engagement of the insulin-sensitive pathway in the stimulation of glucose transport by alpha-lipoic acid in 3T3-L1 adipocytes. Diabetologia. 2000;43(3):294–303. doi: 10.1007/s001250050047, PMID: 10768090

    • Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019;9(8):356. doi: 10.3390/biom9080356, PMID: 31405030

    • Reed LJ. From lipoic acid to multi-enzyme complexes. Protein Sci. 1998;7(1):220–4. doi: 10.1002/pro.5560070125, PMID: 9514279

    • Teichert J, Kern J, Tritschler HJ, Ulrich H, Preiss R. Investigations on the pharmacokinetics of alpha-lipoic acid in healthy volunteers. Int J Clin Pharmacol Ther. 1998;36(12):625–8. PMID: 9876998

    • Carlson DA, Smith AR, Fischer SJ, Young KL, Packer L. The plasma pharmacokinetics of R-(+)-lipoic acid administered as sodium R-(+)-lipoate to healthy human subjects. Altern Med Rev. 2007;12(4):343–51. PMID: 18069903

    • Florenzo M, Cinzia N, Giorgio G, Valerio N, Piera DM. Human bioavailability and pharmacokinetic profile of different formulations delivering Alpha Lipoic Acid. Open Access Sci Rep. 2012;1:1–6.

    • Akiba S, Matsugo S, Packer L, Konishi T. Assay of protein-bound lipoic acid in tissues by a new enzymatic method. Anal Biochem. 1998;258(2):299–304. doi: 10.1006/abio.1998.2615, PMID: 9570842

    • Wollin SD, Jones PJ. Alpha-lipoic acid and cardiovascular disease. J Nutr. 2003;133(11):3327–30. doi: 10.1093/jn/133.11.3327, PMID: 14608040

    • Brufani M. α-lipoic acid drug or supplement. An overview of pharmacokinetics, available formulations, and clinical evidence in diabetes complications. Prog Nutr. 2014;16:62–74.

    • Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol. 2015;93(12):1021–7. doi: 10.1139/cjpp-2014-0353, PMID: 26406389

    • Zhang WJ, Frei B. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J. 2001;15(13):2423–5. doi: 10.1096/fj.01-0260com, PMID: 11689467

    • He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532–53. doi: 10.1159/000485089, PMID: 29145191

    • Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149(1):43–50. doi: 10.1016/s0300-483x(00)00231-6, PMID: 10963860

    • Moura FA, De Andrade KQ, Dos Santos JC, Goulart MO. Lipoic acid: Its antioxidant and anti-inflammatory role and clinical applications. Curr Top Med Chem. 2015;15(5):458–83. doi: 10.2174/1568026615666150114161358, PMID: 25620240

    • Liu Z, Guo J, Sun H, Huang Y, Zhao R, Yang X. α-lipoic acid attenuates LPS-induced liver injury by improving mitochondrial function in association with GR mitochondrial DNA occupancy. Biochimie. 2015;116:52–60. doi: 10.1016/j.biochi.2015.06.023, PMID: 26133658

    • Estrada DE, Ewart HS, Tsakiridis T, Volchuk A, Ramlal T, Tritschler H, et al. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: Participation of elements of the insulin signaling pathway. Diabetes. 1996;45(12):1798–804. doi: 10.2337/diab.45.12.1798, PMID: 8922368

  • Viana MD, Lauria PS, De Lima AA, Opretzka LC, Marcelino HR, Villarreal CF. Alpha-lipoic acid as an antioxidant strategy for managing neuropathic pain. Antioxidants (Basel). 2022;11(12):2420. doi: 10.3390/antiox11122420, PMID: 36552628

  • Mijnhout GS, Kollen BJ, Alkhalaf A, Kleefstra N, Bilo HJ. Alpha lipoic acid for symptomatic peripheral neuropathy in patients with diabetes: A meta-analysis of randomized controlled trials. Int J Endocrinol. 2012;2012:456279. doi: 10.1155/2012/456279, PMID: 22331979

  • Xu Q, Pan J, Yu J, Liu X, Liu L, Zuo X, et al. Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res Clin Pract. 2013;101(2):99–105. doi: 10.1016/j.diabres.2013.03.033, PMID: 23664235

  • Liu F, Zhang Y, Yang M, Liu B, Shen YD, Jia WP, et al. Curative effect of alpha-lipoic acid on peripheral neuropathy in type 2 diabetes: A clinical study. Zhonghua Yi Xue Za Zhi. 2007;87(38):2706–9. PMID: 18167250

  • Sadeghiyan Galeshkalami NS, Abdollahi M, Najafi R, Baeeri M, Jamshidzade A, Falak R, et al. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci. 2019;216:101–10. doi: 10.1016/j.lfs.2018.10.055, PMID: 30393023

  • Choi K, Kim J, Kim H, Kim KT, Kim HS, Kim JT, et al. Alpha-lipoic acid treatment is neurorestorative and promotes functional recovery after stroke in rats. J Neurol Sci. 2013;333:e195. doi: 10.1016/j.jns.2013.07.784

  • Wang Q, Lv C, Sun Y, Han X, Wang S, Mao Z, et al. The role of alpha-lipoic acid in the pathomechanism of acute ischemic stroke. Cell Physiol Biochem. 2018;48(1):42–53. doi: 10.1159/000491661, PMID: 29996116

  • Yan T, Zhang Z, Li D. NGF receptors and PI3K/AKT pathway involved in glucose fluctuation-induced damage to neurons and alpha-lipoic acid treatment. BMC Neurosci. 2020;21(1):38. doi: 10.1186/s12868-020-00588-y, PMID: 32943002

  • Namazi N, Larijani B, Azadbakht L. Alpha-lipoic acid supplement in obesity treatment: A systematic review and meta-analysis of clinical trials. Clin Nutr. 2018;37(2):419–28. doi: 10.1016/j.clnu.2017.06.002, PMID: 28629898

  • Koh EH, Lee WJ, Lee SA, Kim EH, Cho EH, Jeong E, et al. Effects of alpha-lipoic acid on body weight in obese subjects. Am J Med. 2011;124(1):85.e1–8. doi: 10.1016/j.amjmed.2010.08.005, PMID: 21187189

  • Carbonelli MG, Di Renzo L, Bigioni M, Di Daniele N, De Lorenzo A, Fusco MA. Alpha-lipoic acid supplementation: A tool for obesity therapy. Curr Pharm Des. 2010;16(7):840–6. doi: 10.2174/138161210790883589, PMID: 20388095

  • Lee KM, Park KG, Kim YD, Lee HJ, Kim HT, Cho WH, et al. Alpha-lipoic acid inhibits fractalkine expression and prevents neointimal hyperplasia after balloon injury in rat carotid artery. Atherosclerosis. 2006;189(1):106–14. doi: 10.1016/j.atherosclerosis.2005.12.003, PMID: 16413026

  • Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38. doi: 10.1007/s10254-003-0012-2, PMID: 12687404

  • Sola S, Mir MQ, Cheema FA, Khan-Merchant N, Menon RG, Parthasarathy S, et al. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: Results of the ISLAND study. Circulation. 2005;111(3):343–8. doi: 10.1161/01.CIR.0000153272.48711.B9, PMID: 15655130
    51–75:需要後續文獻,提供剩餘段落,繼續齊。

    1. Yaworsky K, Somwar R, Ramlal T, Tritschler HJ, Klip A. Engagement of the insulin-sensitive pathway in the stimulation of glucose transport by alpha-lipoic acid in 3T3-L1 adipocytes. Diabetologia. 2000;43(3):294–303. doi: 10.1007/s001250050047, PMID: 10768090

    2. Viana MD, Lauria PS, De Lima AA, Opretzka LC, Marcelino HR, Villarreal CF. Alpha-lipoic acid as an antioxidant strategy for managing neuropathic pain. Antioxidants (Basel). 2022;11(12):2420. doi: 10.3390/antiox11122420, PMID: 36552628

    3. Mijnhout GS, Kollen BJ, Alkhalaf A, Kleefstra N, Bilo HJ. Alpha lipoic acid for symptomatic peripheral neuropathy in patients with diabetes: A meta-analysis of randomized controlled trials. Int J Endocrinol. 2012;2012:456279. doi: 10.1155/2012/456279, PMID: 22331979

    4. Xu Q, Pan J, Yu J, Liu X, Liu L, Zuo X, et al. Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res Clin Pract. 2013;101(2):99–105. doi: 10.1016/j.diabres.2013.03.033, PMID: 23664235

    5. Liu F, Zhang Y, Yang M, Liu B, Shen YD, Jia WP, et al. Curative effect of alpha-lipoic acid on peripheral neuropathy in type 2 diabetes: A clinical study. Zhonghua Yi Xue Za Zhi. 2007;87(38):2706–9. PMID: 18167250

    6. Sadeghiyan Galeshkalami NS, Abdollahi M, Najafi R, Baeeri M, Jamshidzade A, Falak R, et al. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci. 2019;216:101–10. doi: 10.1016/j.lfs.2018.10.055, PMID: 30393023

    7. Choi K, Kim J, Kim H, Kim KT, Kim HS, Kim JT, et al. Alpha-lipoic acid treatment is neurorestorative and promotes functional recovery after stroke in rats. J Neurol Sci. 2013;333:e195. doi: 10.1016/j.jns.2013.07.784

    8. Wang Q, Lv C, Sun Y, Han X, Wang S, Mao Z, et al. The role of alpha-lipoic acid in the pathomechanism of acute ischemic stroke. Cell Physiol Biochem. 2018;48(1):42–53. doi: 10.1159/000491661, PMID: 29996116

    9. Yan T, Zhang Z, Li D. NGF receptors and PI3K/AKT pathway involved in glucose fluctuation-induced damage to neurons and alpha-lipoic acid treatment. BMC Neurosci. 2020;21(1):38. doi: 10.1186/s12868-020-00588-y, PMID: 32943002

    10. Namazi N, Larijani B, Azadbakht L. Alpha-lipoic acid supplement in obesity treatment: A systematic review and meta-analysis of clinical trials. Clin Nutr. 2018;37(2):419–28. doi: 10.1016/j.clnu.2017.06.002, PMID: 28629898

    11. Koh EH, Lee WJ, Lee SA, Kim EH, Cho EH, Jeong E, et al. Effects of alpha-lipoic acid on body weight in obese subjects. Am J Med. 2011;124(1):85.e1–8. doi: 10.1016/j.amjmed.2010.08.005, PMID: 21187189

    12. Carbonelli MG, Di Renzo L, Bigioni M, Di Daniele N, De Lorenzo A, Fusco MA. Alpha-lipoic acid supplementation: A tool for obesity therapy. Curr Pharm Des. 2010;16(7):840–6. doi: 10.2174/138161210790883589, PMID: 20388095

    13. Lee KM, Park KG, Kim YD, Lee HJ, Kim HT, Cho WH, et al. Alpha-lipoic acid inhibits fractalkine expression and prevents neointimal hyperplasia after balloon injury in rat carotid artery. Atherosclerosis. 2006;189(1):106–14. doi: 10.1016/j.atherosclerosis.2005.12.003, PMID: 16413026

    14. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38. doi: 10.1007/s10254-003-0012-2, PMID: 12687404

    15. Sola S, Mir MQ, Cheema FA, Khan-Merchant N, Menon RG, Parthasarathy S, et al. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: Results of the ISLAND study. Circulation. 2005;111(3):343–8. doi: 10.1161/01.CIR.0000153272.48711.B9, PMID: 15655130
      51–75:需要後續文獻,提供剩餘段落,繼續齊。



    1. Duann P, Lin PH. Mitochondria damage and kidney disease. Adv Exp Med Biol. 2017;982:529–51. doi: 10.1007/978-3-319-55330-6_27, PMID: 28551805

    2. Song Y, Yu H, Sun Q, Pei F, Xia Q, Gao Z, et al. Grape seed proanthocyanidin extract targets p66Shc to regulate mitochondrial biogenesis and dynamics in diabetic kidney disease. Front Pharmacol. 2022;13:1035755. doi: 10.3389/fphar.2022.1035755, PMID: 36686673

    3. Cleveland KH, Schnellmann RG. Pharmacological targeting of mitochondria in diabetic kidney disease. Pharmacol Rev. 2023;75(2):250–62. doi: 10.1124/pharmrev.122.000560, PMID: 36781216

    4. Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest. 2023;133(4):e165654. doi: 10.1172/JCI165654, PMID: 36787250

    5. Zhang J, McCullough PA. Lipoic acid in the prevention of acute kidney injury. Nephron. 2016;134(3):133–40. doi: 10.1159/000448666, PMID: 27603173

    6. Zhang HF, Liu HM, Xiang JY, Zhou XC, Wang D, Chen RY, et al. Alpha lipoamide inhibits diabetic kidney fibrosis via improving mitochondrial function and regulating RXRα expression and activation. Acta Pharmacol Sin. 2023;44(5):1051–65. doi: 10.1038/s41401-022-00997-1, PMID: 36347997

    7. Lim PS, Wei YH, Yu YL, Kho B. Enhanced oxidative stress in haemodialysis patients receiving intravenous iron therapy. Nephrol Dial Transplant. 1999;14(11):2680–7. doi: 10.1093/ndt/14.11.2680, PMID: 10534512

    8. Roob JM, Khoschsorur G, Tiran A, Horina JH, Holzer H, Winklhofer-Roob BM. Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol. 2000;11(3):539–49. doi: 10.1681/ASN.V113539, PMID: 10703678

    9. Leehey DJ, Palubiak DJ, Chebrolu S, Agarwal R. Sodium ferric gluconate causes oxidative stress but not acute renal injury in patients with chronic kidney disease: A pilot study. Nephrol Dial Transplant. 2005;20(1):135–40. doi: 10.1093/ndt/gfh565, PMID: 15522899

    10. Lee SJ, Kang JG, Ryu OH, Kim CS, Ihm SH, Choi MG, et al. Effects of alpha-lipoic acid on transforming growth factor β1-p38 mitogen-activated protein kinase-fibronectin pathway in diabetic nephropathy. Metabolism. 2009;58(5):616–23. doi: 10.1016/j.metabol.2008.12.006, PMID: 19375583

    11. Cavdar Z, Oktan MA, Ural C, Calisir M, Kocak A, Heybeli C, et al. Renoprotective effects of alpha lipoic acid on iron overload-induced kidney injury in rats by suppressing NADPH oxidase 4 and p38 MAPK signaling. Biol Trace Elem Res. 2020;193(2):483–93. doi: 10.1007/s12011-019-01733-3, PMID: 31025242

    12. Gao WW, Chun SY, Kim BS, Ha YS, Lee JN, Lee EH, et al. Locally transplanted human urine-induced nephron progenitor cells contribute to renal repair in mice kidney with diabetic nephropathy. Biochem Biophys Res Commun. 2022;629:128–34. doi: 10.1016/j.bbrc.2022.09.015, PMID: 36116375

    13. Wu J, Li R, Li W, Ren M, Thangthaeng N, Sumien N, et al. Administration of 5-methoxyindole-2-carboxylic acid that potentially targets mitochondrial dihydrolipoamide dehydrogenase confers cerebral preconditioning against ischemic stroke injury. Free Radic Biol Med. 2017;113:244–54. doi: 10.1016/j.freeradbiomed.2017.10.008, PMID: 29017857

    14. Golbidi S, Badran M, Laher I. Diabetes and alpha lipoic acid. Front Pharmacol. 2011;2:69. doi: 10.3389/fphar.2011.00069, PMID: 22125537

    15. Ghibu S, Craciun CE, Rusu R, Morgovan C, Mogosan C, Rochette L, et al. Impact of alpha-lipoic acid chronic discontinuous treatment in cardiometabolic disorders and oxidative stress induced by fructose intake in rats. Antioxidants (Basel). 2019;8(12):636. doi: 10.3390/antiox8120636, PMID: 31835800

    16. Prabhakar S, Starnes J, Shi S, Lonis B, Tran R. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J Am Soc Nephrol. 2007;18(11):2945–52. doi: 10.1681/ASN.2006080895, PMID: 17928507

    17. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, et al. Retinopathy in diabetes. Diabetes Care. 2004;27(Suppl 1):S847. doi: 10.2337/diacare.27.2007.S84

    18. Ajith TA. Alpha-lipoic acid: A possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin Exp Pharmacol Physiol. 2020;47(12):1883–90. doi: 10.1111/1440-1681.13373, PMID: 32621549

    19. Genazzani AD, Prati A, Marchini F, Petrillo T, Napolitano A, Simoncini T. Differential insulin response to oral glucose tolerance test in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol, alpha lipoic acid, or combination of both. Gynecol Endocrinol. 2019;35:1088–93.

    20. Genazzani AD, Shefer K, Della Casa D, Prati A, Napolitano A, Manzo A, et al. Modulatory effects of alpha lipoic acid administration on insulin sensitivity in obese PCOS patients. J Endocrinol Invest. 2018;41(5):583–90. doi: 10.1007/s40618-017-0782-z, PMID: 29090431

    21. Nobakht-Haghighi N, Rahimifard M, Baeeri M, Rezvanfar MA, Moini Nodeh S, Haghi-Aminjan H, et al. Regulation of aging and oxidative stress pathways in aged pancreatic islets using alpha-lipoic acid. Mol Cell Biochem. 2018;449(1–2):267–76. doi: 10.1007/s11010-018-3363-3, PMID: 29696608

    22. Moffa S, Improta I, Rocchetti S, Mezza T, Giaccari A. Potential cause-effect relationship between insulin autoimmune syndrome and alpha lipoic acid: Two case reports. Nutrition. 2019;57:1–4. doi: 10.1016/j.nut.2018.04.010, PMID: 30086435

    23. Cremer DR, Rabeler R, Roberts A, Lynch B. Safety evaluation of alpha-lipoic acid (ALA). Regul Toxicol Pharmacol. 2006;46(1):29–41. doi: 10.1016/j.yrtph.2006.06.004, PMID: 16904799

    24. Jibril AT, Jayedi A, Shab-Bidar S. Efficacy and safety of oral alpha-lipoic acid supplementation for type 2 diabetes management: A systematic review and dose-response meta-analysis of randomized trials. Endocr Connect. 2022;11(10):e220322. doi: 10.1530/EC-22-0322, PMID: 36006850

    25. Vigil M, Berkson BM, Garcia AP. Adverse effects of high doses of intravenous alpha-lipoic acid on liver mitochondria. Glob Adv Health Med. 2014;3(1):25–7. doi: 10.7453/gahmj.2013.011, PMID: 247539