最大攝氧量揭示心臟健康關鍵:腰圍比體重更具預測力!

本翻譯僅作學術交流用,無商業意圖,請勿轉載,如有疑議問請來信

研究發現,最大攝氧量(VO2max)與心血管疾病及全因死亡風險呈顯著反比關係。雖然以體重調整的傳統指標已具參考價值,但加入腰圍的模型可提升預測力,特別是在女性與50歲以下族群中效果更強,為臨床評估提供新方向。

將 VO 2 max 按身體大小差異進行標準化,以評估與心血管疾病發生率和全因死亡風險的關聯

Scaling VO2max to body size differences to evaluate associations to CVD incidence and all-cause mortality risk

Salier Eriksson J, Ekblom B, Andersson G, Wallin P, Ekblom-Bak E. Scaling VO2max to body size differences to evaluate associations to CVD incidence and all-cause mortality risk. BMJ Open Sport Exerc Med. 2021;7(1):e000854. Published 2021 Jan 29. doi:10.1136/bmjsem-2020-000854

https://pubmed.ncbi.nlm.nih.gov/33537151/

摘要 Abstract

目標 評估和比較最大氧氣消耗量(VO 2 max)對不同身體尺寸測量的比率和全異性縮放模型,與心血管疾病(CVD)發病率和全因死亡風險的關聯。
Objective To evaluate and compare ratio and allometric scaling models of maximal oxygen consumption (VO2max) for different body size measurements in relation to cardiovascular disease (CVD) incidence and all-cause mortality.

方法 316,116 名參加職業健康篩檢的個體,最初無心血管疾病,納入研究。使用亞最大自行車測試估算 VO 2 max。評估身高、體重和腰圍(WC),並推導出八種不同的縮放模型(其中兩種在有 WC 數據的限制樣本中進行評估)。參與者在國家登記中被跟蹤,從健康篩檢到首次 CVD 事件、死亡或 2015 年 12 月 31 日的全因死亡。
Methods 316 116 individuals participating in occupational health screenings, initially free from CVD, were included. VO2max was estimated using submaximal cycle test. Height, body mass and waist circumference (WC) were assessed, and eight different scaling models (two evaluated in a restricted sample with WC data) were derived. Participants were followed in national registers for first-time CVD event or all-cause mortality from their health screening to first CVD event, death or 31 December 2015.

結果顯示,VO 2 max 的十個增量與所有六個模型在全樣本中(p<0.001)以及在限制樣本中的五個增量(八個模型)(p<0.001)均顯示出較低的心血管疾病(CVD)風險和全因死亡率。對於 CVD 風險和全因死亡率,模型 1(L·min −1 )和模型 5(mL·min −1 ·height −2 )的十個增量與模型 2(mL·min −1 ·kg −1 )相比,顯示出顯著較弱的關聯性(CVD, p<0.00001; p<0.00001: 全因死亡率, p=0.008; p=0.001),並在某些子群中也是如此。對於 CVD,模型 6(mL·min −1 ·(kg 1 ·height −1 ) −1 )的關聯性較模型 2 更強(p<0.00001),並在某些子群中也是如此。
Results Increasing deciles of VO2max showed lower CVD risk and all-cause mortality for all six models in the full sample (p<0.001) as well as with increasing quintiles in the restricted sample (eight models) (p<0.001). For CVD risk and all-cause mortality, significantly weaker associations with increasing deciles for models 1 (L·min−1) and 5 (mL·min−1·height−2) were seen compared with model 2 (mL·min−1·kg−1), (CVD, p<0.00001; p<0.00001: all-cause mortality, p=0.008; p=0.001) and in some subgroups. For CVD, model 6 (mL·min−1·(kg1·height−1)−1) had a stronger association compared with model 2 (p<0.00001) and in some subgroups.

在限制樣本中,發現女性在 CVD 和全因死亡率方面,包含 WC 的模型與模型 2 相比顯示出顯著更強的關聯性,並且在 50 歲以下的人群中對於 CVD 也是如此。
In the restricted sample, trends for significantly stronger associations for models including WC compared with model 2 were seen in women for both CVD and all-cause mortality, and those under 50 for CVD.

結論 在與 CVD 和全因死亡率的關聯中,比例縮放和全變量縮放模型之間的差異僅為小幅,當在模型中加入 WC 時,某些關聯性更強。
Conclusion In association to CVD and all-cause mortality, only small differences were found between ratio scaling and allometric scaling models where body dimensions were added, with some stronger associations when adding WC in the models.

引言 Introduction

心肺最大氧氣消耗量(VO 2 max)評估,血管疾病(CVD)獨立預測因子。絕對 VO 2 max 水平(L·min −1 )主要依賴遺傳因素、中等高強度身體活動水平體型。為了表現相關健康相關方面進行體內比較,VO 2 max 傳統使用比率縮放(Y=bX)調整體型差異。常用體重單位公斤(mL·min −1 ·kg −1 表示)。然而,越來越證據表明,性、比率標準VO 2 max 表達方式可能導致幾種類型錯誤誤解,包括較大體型受到懲罰,體型受到偏愛。

Cardiorespiratory fitness assessed as maximal oxygen consumption (VO2max) is a strong independent predictor for cardiovascular disease (CVD). Absolute VO2max level (L·min−1) is mainly dependent on genetic contribution, moderate-to-vigorous intensity levels of physical activity and body size. To enable intraindividual comparisons in terms of both performance-related and health-related aspects, VO2max is traditionally scaled for body size differences using ratio scaling (Y=bX). Most commonly, body mass in kg is used (expressed as mL·min−kg−1). However, a growing body of evidence indicates that the linear, per-ratio standard way of expressing VO2max can lead to several types of errors and misinterpretations, including larger subjects being penalised and lighter subjects favouritised.

幾何相似性的理論指出,比較不同大小人類之間生物功能時,測量應該同質的。靜態動態功能尺寸(L)倍數表示。使用傳統比例縮放身體大小標準化VO 2 max 符合幾何相似性的理論,因為尺寸中,絕對 VO 2 max 分鐘 −1 ·公斤 −1 表示,這是L 3 除以分鐘(L)體重(L 3 )形式表達的,並不導致同質性(≠ 1)。另一方面,縮放一種遵循幾何相似理論模型,比例縮放相比,提議個體內部大小無關比較更為準確。縮放模型方程Y=aX b 。這個上下文中,Y VO 2 (升 = L 3 ),a 常數,X 身體大小變量,b 指數參數。身高體重兩個易於獲取身體大小測量,可以用於 VO 2 縮放。 異質樣本中,理論建議VO 2 max 縮放指數可以身高 2 體重 2/3 (兩者均等L 2 )。此外,身體脂肪分佈,特別是以腰圍(WC)測量腹部過多脂肪,血管疾病(CVD)風險有著強烈關聯。因此,納入一個易於獲得腹部脂肪測量(例如,WC)具有臨床相關性。

The theory of geometric similarity states that when comparing biological functions between humans of different sizes, the measures should be dimensionally homogenous. Static and dynamic functions are expressed as multiples of the linear dimension (L). VO2max scaled for body size using traditional ratio scaling does not comply to the theory of geometric similarity, as absolute VO2max in L·min−kg−1 in linear dimensions is expressed as L3 divided by minutes (L) and body mass (L3), which does not result in dimensional homogeneity (≠ 1). Allometric scaling, on the other hand, is a model that follows the theory of geometric similarity and has been proposed to be more accurate, compared with ratio scaling, for intraindividual size-independent comparisons. The allometric scaling model equation reads Y=aXb. In this context, Y is VO2 (litre = L3), a is the constant, X is the body size variable and b is the exponent parameter. Height and body mass are two easy accessible measures of body size that can be used for allometric scaling of VO2. In heterogenic samples, theoretical suggested exponents for scaling for VO2max can be either height2 or body mass2/3 (both equal to L2). Furthermore, body fat distribution, in particular excess fat in the abdominal region measured as waist circumference (WC), has a strong association with CVD risk. Thus, also including an easy accessible measure of abdominal fat (eg, WC) would be clinically relevant.

對於身體大小差異VO 2 max 比率尺度縮放,主要是心肺相關表現方面進行評估,通常使用樣本進行體內比較。我們所知,只有兩項研究評估VO 2 max 健康相關方面(血管疾病風險因素、死亡率)相關不同身體測量縮放。之前研究沒有比較不同VO 2 max 縮放方式,包括不同身體大小變數,並將這些應用於健康視角理論。因此,研究目的評估比較不同模型絕對 VO 2 max 進行身體大小縮放,血管疾病風險死亡率關係,針對不同年齡男性女性進行樣本研究。

Both ratio and allometric scaling of VO2max for body size differences have mainly been evaluated in terms of the performance-related aspect of cardiorespiratory fitness, often using small sample sizes to enable intraindividual comparisons. To our knowledge, only two studies have evaluated scaling of VO2max for different body measurements in association with health-related aspects (CVD risk factors, all-cause mortality). No previous study has compared different ways of scaling VO2max including different variables of body size, applying these, with the dimensional theory, to a health perspective. Thus, the aim of this study was to evaluate and compare different models scaling absolute VO2max for body size, in relation to CVD risk and all-cause mortality in a large sample of men and women of different ages.

The theory of geometric similarity states that when comparing biological functions between humans of different sizes, the measures should be dimensionally homogenous. Static and dynamic functions are expressed as multiples of the linear dimension (L).6 7 VO2max scaled for body size using traditional ratio scaling does not comply to the theory of geometric similarity, as absolute VO2max in L·min−1·kg−1 in linear dimensions is expressed as L3 divided by minutes (L) and body mass (L3), which does not result in dimensional homogeneity (≠ 1). Allometric scaling, on the other hand, is a model that follows the theory of geometric similarity and has been proposed to be more accurate, compared with ratio scaling, for intraindividual size-independent comparisons. The allometric scaling model equation reads Y=aXb. In this context, Y is VO2 (litre = L3), a is the constant, X is the body size variable and b is the exponent parameter.7 8 Height and body mass are two easy accessible measures of body size that can be used for allometric scaling of VO2. In heterogenic samples, theoretical suggested exponents for scaling for VO2max can be either height2 or body mass2/3 (both equal to L2).9 Furthermore, body fat distribution, in particular excess fat in the abdominal region measured as waist circumference (WC), has a strong association with CVD risk.10 11 Thus, also including an easy accessible measure of abdominal fat (eg, WC) would be clinically relevant.

對於身體大小差異的 VO 2 max 的比率和全尺度縮放,主要是從與心肺適能相關的表現方面進行評估,通常使用小樣本來進行個體內比較。據我們所知,只有兩項研究評估了 VO 2 max 在與健康相關方面(心血管疾病風險因素、全因死亡率)相關的不同身體測量的縮放。12 13 之前的研究沒有比較不同的 VO 2 max 縮放方式,包括不同的身體大小變數,並將這些應用於健康視角的維度理論。因此,本研究的目的是評估和比較不同模型對絕對 VO 2 max 進行身體大小縮放,與心血管疾病風險和全因死亡率的關係,針對不同年齡的男性和女性進行大樣本研究。

Both ratio and allometric scaling of VO2max for body size differences have mainly been evaluated in terms of the performance-related aspect of cardiorespiratory fitness, often using small sample sizes to enable intraindividual comparisons. To our knowledge, only two studies have evaluated scaling of VO2max for different body measurements in association with health-related aspects (CVD risk factors, all-cause mortality).12 13 No previous study has compared different ways of scaling VO2max including different variables of body size, applying these, with the dimensional theory, to a health perspective. Thus, the aim of this study was to evaluate and compare different models scaling absolute VO2max for body size, in relation to CVD risk and all-cause mortality in a large sample of men and women of different ages.

材料與方法 Materials and methods

程序 Procedure

本研究的數據來自由 HPI 健康檔案研究所(瑞典斯德哥爾摩)管理的健康檔案評估(HPA)數據庫。該研究所自 1970 年代末以來負責標準化方法並教育數據收集人員。參與是自願的,對個人免費,並提供給所有為與職業或其他健康服務相關的公司或組織工作的員工。HPA 包括一份廣泛的問卷、人體測量、用於估算 VO 2 max 的亞最大自行車測試,以及以人為中心的對話。所有數據隨後都記錄在數據庫中。從 1982 年 1 月到 2015 年 12 月,共有 316,116 名參與者的數據被納入分析,這些參與者具有有效的估算 VO 2 max 測試且沒有先前的心血管疾病事件。WC 於 2001 年作為一項測量加入,因此所有包括 WC 的分析均自此日期開始。該子組由 63,380 名參與者組成,參與者的特徵顯示在表 1A、B 中,並按性別以及 50 歲以下和 50 歲以上進行劃分。這一年齡的切點是隨意決定的。

Data were obtained for this study from the Health Profile Assessment (HPA) database managed by the HPI Health Profile Institute (Stockholm, Sweden). The institute has been responsible for standardising methods and educating the data collection staff since the late 1970s.14 Participation is optional and cost-free for the individual and is offered to all employees working for a company or organisation connected to occupational or other health services. The HPA comprises an extensive questionnaire, anthropometric measurements, a submaximal cycle test for estimation of VO2max, and a person-centred dialogue. All data are subsequently recorded in the database. From January 1982 to December 2015, data from a total of 316 116 participants with a valid estimated VO2max test and no previous CVD event were included in the analyses. WC was added as a measurement in 2001 so all analyses including WC are from this date. This subgroup consisted of 63 380 participants Characteristics of the participants are shown in table 1A,B where they have been divided by sex as well as under and over 50 years of age. This cut-point of ages was an arbitrary decision.

表 1 參與者的特徵

VO 2 max 的評估
Assessment of VO2max

VO 2 max 使用標準化最大 Åstrand 自行車測試估算的。為了最小最大測試已知誤差,參與要求測試24 小時避免劇烈活動,測試3 小時1 小時分別避免吃重吸煙/使用鼻煙,避免壓力。經過標準測試,Åstrand 測試顯示估算直接測量VO 2 max 之間平均差異沒有系統偏差變異有限,跑步測試平均差異0.01 L∙min −1 ,95% CI −0.10 0.11,絕對誤差變異係數其他最大測試相似(SEE=0.48 L∙min −1 ,CV=18.1%)。因此,最大測試適合用於大型選擇隊列。

VO2max was estimated using the standardised submaximal Åstrand cycle ergometer test. In order to minimise well-known errors with submaximal testing, participants were asked to abstain from vigorous activity 24 hours before the test, eating a heavy meal or smoking/using snuff 3 hours and 1 hour before the test, respectively, as well as avoiding stress. Tested for criterion validity, the Åstrand test shows no systematic bias and limited variation in mean differences between estimated and directly measured VO2max while treadmill running (mean difference 0.01 L∙min−1, 95% CI −0.10 to 0.11), with an absolute error and coefficient of variance similar to other submaximal tests (SEE=0.48 L∙min−1, CV=18.1%). The submaximal test is thus suitable for use in large unselected cohorts.

身體尺寸測量 Body size measurements

身高和體重分別以 0.5 厘米和 0.5 公斤的精度進行評估,使用經校準的秤和壁掛式身高計。腰圍在正常呼氣後,使用卷尺在髂嵴頂部和最後一根可觸及肋骨下緣之間的中點測量,精度為 0.5 厘米。

Body height and weight were assessed to the nearest 0.5 cm and 0.5 kg, respectively, by a calibrated scale and wall-mounted stadiometer. WC was measured with a tape measure to the nearest 0.5 cm at the midpoint between the top of the iliac crest and the lower margin of the last palpable rib in the mid-axillary line after normal exhalation.

心血管疾病事件和死亡監測
CVD event and mortality surveillance

有關首次血管疾病事件死亡數據來自瑞典國家登記,使用獨特瑞典個人身份號碼納入個別分析。所有參與健康檢查開始,跟蹤首次血管疾病事件、死亡截至 2015 12 31 日。首次血管疾病事件發生案例(致命致命心肌梗死、心絞痛或缺血性中風;ICD8,410–414 430–438;ICD9,410–414、427、429 430–437;ICD10,I20-I25、I46 I60-I66)以及任何原因死亡通過瑞典國家死亡原因登記國家住院登記進行確認。

Data on first-time CVD event or all-cause mortality were derived from Swedish national registers and included in the analyses on an individual level using the unique Swedish personal identity number. All participants were followed from their HPA to the first CVD event, death or until 31 December 2015. Incident cases of first-time CVD event after the HPA (fatal or non-fatal myocardial infarction, angina pectoris or ischaemic stroke; ICD8, 410–414 and 430–438; ICD9, 410–414, 427, 429 and 430–437; ICD10, I20-I25, I46 and I60-I66) and death from any cause were ascertained through the Swedish national cause of death registry and the national in-hospital registry.

用於 VO 2 max 的縮放模型
Models derived for scaling of VO2max

衍生不同VO 2 max 標準化模型,其中一種使用任何身體測量,六種使用體重和/身高作為身體大小測量,兩種使用腰圍。除了模型 1 2,分別使用每分鐘傳統公斤體重標準化VO 2 max 進行比較外,所有模型根據幾何相似性的理論衍生出來,具有正確性。模型 4 使用來自大型人群樣本性別特定體重指數。六個模型包含研究人群中所有參與數據(n=316 116 參與者),只有 63 380 案例提供腰圍數據納入模型 7 8。不同模型2 描述。

Eight different models for scaling of VO2max were derived, one not using any body measurements, six using body mass and/or height as measures of body size, and two using WC. Apart from models 1 and 2, which used litres per minute and the traditional ratio scaling of VO2max by body mass in kg, respectively, for comparative purposes, all models were derived to be dimensionally correct according to the theory of geometric similarity. Model 4 uses sex-specific exponents for body mass derived from large population samples. Six models included data for all participants in the study population (n=316 116 participants), while only 63 380 cases provided data for WC and were included in models 7 and 8. The different models are described in table 2.

表 2 分析中包含的八種不同模型的描述

統計分析 Statistical analyses

每個連續模型範圍不同,因此每個模型進一步分為性別特定年齡特定(18–50 歲;>50 歲)特定十分位數(樣本比較模型 1–6,n=316 116),五分位數(提供 WC 數據參與限制樣本比較所有模型,n=63 380)。使用 Cox 比例風險回歸模型評估 HR 95% CI,預測首次 CVD 發生死亡風險,不同模型以及相應十分位數五分位數相關。為了比較不同模型隨著縮放 VO 2 max 增加變化風險關聯(HR)常用縮放方法(模型 2;mL·min −1 ·kg −1 ),使用 R 核心團隊描述程序,對於依賴樣本進行 Bonferroni 調整進行多重比較。樣本模型 1–6 之間比較使用 P<0.01 作為顯著水平,限制樣本模型 1–8 之間比較使用 p<0.007。 顯著趨勢定義p<0.05。協調統計作為 Cox 回歸模型測量,包括模型連續變數。使用縮放Schönfelts 檢查 Cox 回歸比例假設,我們發現沒有違反比例假設。數據使用 IBM SPSS 進行分析,版本 24.0.0,2016 年,SPSS。

The range of values for each continuous model varied, hence, each model was further divided into sex-specific and age-specific (18–50 years; >50 years) specific deciles (comparison of models 1–6 in full sample, n=316 116), or quintiles (comparison of all models in a restricted sample of participants that provided WC data, n=63 380). Cox proportional hazard regression modelling was used to assess HR with 95% CI to predict first time CVD incidence and all-cause mortality in relation to the different models and in relation to the deciles and quintiles, respectively. To compare risk associations (HR) with increasing deciles or quintiles of scaled VO2max between the different models in comparison to the method most commonly used for scaling (model 2; mL·min−kg−1), the procedure described by R Core Team was used for dependent samples with Bonferroni adjustment for multiple comparison. P<0.01 was used as level of significance for comparisons between models 1–6 in the full sample, and p<0.007 for comparisons between models 1–8 in the restricted sample. Trends of significance were defined as p<0.05. Concordance statistics were calculated as a measure of goodness-of-fit for Cox regression models including continuous variables for the models. The proportionality assumption for Cox regression was examined using scaled Schönfelts residuals, and we found no violation of the proportionality assumption. Data were analysed using IBM SPSS, V.24.0.0, 2016, SPSS.

結果 Results

總共有 316,116 參與者(45%女性)納入比較模型 1-6,其中4,760 血管疾病(28%女性,平均時間6.8±4.7 年),以及 2,936 各種原因死亡(43%女性,平均時間6.8±4.7 年)。比較所有模型(1-8)限制樣本分析中,納入 63,380 參與者(39%女性),391 血管疾病(24%女性,平均時間3.5±2.5 年)185 各種原因死亡(30%女性,平均時間3.5±2.5 年)。

A total of 316 116 participants (45% women) were included to compare models 1–6, where there were 4760 cases of CVD (28% women, mean follow-up time of 6.8±4.7 years), and 2936 deaths due to all causes (43% women a mean follow-up time of 6.8±4.7 years). In the restricted sample analyses comparing all models (1–8), a total of 63 380 participants (39% women) were included, with 391 cases of CVD (24% women, mean follow-up time of 3.5±2.5 years) and 185 deaths due to all causes (30% women, mean follow-up time 3.5±2.5 years.

隨著 VO 2 max 增加,模型 1–6 完整樣本分析較低血管疾病風險死亡率相關(p<0.001)(1A,B)。完整樣本分析中,模型 2 相比,每個更高血管疾病風險關聯,模型 1 (L·min −1 ) 模型 5 (mL·min·height −2 ) 模型 2 (mL·min −1 ·kg −1 ) 關聯顯著弱(p<0.00001; p<0.00001)。模型 1 5 所有模型 2 關聯顯著弱(所有p<0.00001)。模型 3 (mL·min·kg −0.67 ) 4 (mL·min·kg −0.76 and −0.52 ) 整個樣本模型 2 關聯顯著弱(p=0.0004; p<0.00006),女性(p=0.0003; p=0.00009),以及 50 以下人(p<0.00001; p=0.00001),男性顯示關聯趨勢(p=0.038; p=0.015)。模型 6 (mL·min −1 ·(kg 1 ·height −1 ) −1 ) 模型 2 整個樣本中有關聯(p<0.00001),男性(p<0.00001)以及兩個年齡群(p=0.0001; p<0.00002),(3A 1)。

Increasing deciles of VO2max were associated with lower CVD risk and all-cause mortality for models 1–6 in the full sample analyses (p<0.001) (figure 1A,B). For risk associations per each higher decile for each model compared with model 2 for CVD risk in the full sample analyses, model 1 (L·min−1) and model 5 (mL·min·height−2) had significantly weaker associations compared with model 2 (mL·min−kg−1) (p<0.00001; p<0.00001). Models 1 and 5 also had a significantly weaker association compared with model two in all subgroups (p<0.00001 for all subgroups). Models 3 (mL·min·kg−0.67) and 4 (mL·min·kg−0.76 and −0.52) had a significantly weaker association compared with model 2 in the whole sample (p=0.0004; p<0.00006), women (p=0.0003; p=0.00009), and those under 50 years (p<0.00001; p=0.00001), as well as a trend for a weaker association for men (p=0.038; p=0.015). Model 6 (mL·min−1·(kg1·height−1)−1) had a stronger association compared with model 2 for the whole sample (p<0.00001), men (p<0.00001) and both age subgroups (p=0.0001; p<0.00002), (table 3A and figure 1).

圖 1 每十個分位數的心血管疾病風險(左)和全因死亡率(右)的風險比(HRs),模型 1-6 的總樣本(n=316 116)。心血管疾病,CVD;最大氧氣消耗量,VO 2 max。 圖 2 每五個分位數的心血管疾病風險(左)和全因死亡率(右)的風險比(HRs),模型 1-8 的限制樣本(n=63 380)。心血管疾病,CVD;最大氧氣消耗量,VO 2 max。 表 3 不同模型的心血管疾病風險和全因死亡率的風險比(HR)及 95%置信區間(CI)和一致性。

對於全因死亡率,模型 1 (L·min −1 ) 和模型 5 (mL·min −1 ·height −2 ) 與增加的標準化 VO 2 max 十分位數之間的關聯顯著較弱,與模型 2 相比,對於全樣本 (p=0.0008; p=0.001)、男性 (p=0.003; 0.0005) 和 50 歲以下者 (p<0.0001; p<0.00001) 均如此 (表 3A 和圖 1)。模型 4 對於 50 歲以上者與模型 2 之間顯示出顯著較強的關聯 (p=0.009)。

For all-cause mortality, significantly weaker associations with increasing deciles of scaled VO2max were seen for model 1 (L·min−1) and model 5 (mL·min−1·height−2) in comparison to model 2 for the full sample (p=0.0008; p=0.001), men (p=0.003; 0.0005) and those under 50 (p<0.0001; p<0.00001), (table 3A and figure 1). Model 4 showed a significantly stronger association to model 2 for those over 50 (p=0.009).

在受限樣本中,所有模型與隨著 VO 2 max 的五分位數增加而降低的心血管疾病風險和全因死亡率相關(p<0.001)(圖 2A,B)。對於心血管疾病風險,模型 5 (mL.min.height −2 ) 與整個樣本的五分位數增加相比,與模型 2 (mL.min −1 kg −1 ) 的關聯顯著較弱(p=0.0009),女性(p=0.001)。模型 1 (L·min −1 ) 與女性(p=0.003)和 50 歲以下的人(p=0.002)相比,與模型 2 (mL.min −1 kg −1 ) 的關聯顯著較弱,並且在整個樣本中有趨勢顯示關聯顯著較弱(p=0.025)(表 3B)。模型 5 對男性顯示出顯著較弱的關聯趨勢(p=0.031)。對於 50 歲以下的人,模型 7 (mL·min −1 ·WC −2 ) 和模型 8 (mL·min −1 ·(WC 3 ·height −1 ) −1 ) 與模型 2 的心血管疾病風險有顯著較強的關聯(兩個模型均為 p=0.002),並且模型 8 對女性有趨勢(p=0.033)。

In the restricted sample, all models were associated with lower CVD risk and all-cause mortality with increasing quintiles of VO2max (p<0.001) (figure 2A,B). For CVD risk, model 5 (mL.min.height−2) had a significantly weaker association with increasing quintiles compared with model 2 (mL.min−1 kg−1) for the whole sample (p=0.0009), and women (p=0.001). Model 1 (L·min−1) had a significantly weaker association compared with model 2 (mL.min−1 kg−1) for women (p=0.003) and those under 50 (p=0.002), and a trend towards a significantly weaker association in the whole sample (p=0.025) (table 3B). Model 5 showed a trend of a significantly weaker association (p=0.031) for men. There was a significantly stronger association to CVD risk for model 7 (mL·min−1·WC−2) and model 8 (mL·min−1·(WC3·height−1)−1) compared with model 2 for those under 50 (p=0.002 for both models) and a trend for women (p=0.033) for model 8.

對於全因死亡率,模型 2 與其他任何模型之間沒有顯著差異(表 3B 和圖 2)。與模型 2 相比,模型 7(mL·min −1 ·WC −2 )和模型 8(mL·min −1 ·(WC 3 ·height −1 ) −1 )在女性的全因死亡率方面顯示出顯著更強的關聯趨勢(p=0.012;p=0.033)。
For all-cause mortality, model 2 did not differ significantly from any of the other models (table 3B and figure 2). There was a trend towards a significantly stronger association for model 7 (mL·min−1·WC−2,) and model 8 (mL·min−1·(WC3·height−1)−1) compared with model 2 for all-cause mortality in women (p=0.012; p=0.033).

討論 Discussion

研究主要發現是,所有根據不同身體測量標準調整VO₂max 模型,樣本限制樣本較低血管疾病 (CVD) 風險死亡率相關。樣本分析中,模型 1 (L·min⁻¹) 模型 5 (mL·min⁻¹·height⁻²) 相較參考模型 2 (mL·min⁻¹·kg⁻¹),增加十分位數風險關聯較為平緩,無論對於 CVD 風險還是死亡率。這一現象所有 CVD 風險均有觀察到,並且男性年齡低於 50 群體死亡率如此。限制樣本中,包括使用腰圍 (WC) 調整模型,模型 7 (mL·min⁻¹·WC⁻²) 模型 8 (mL·min⁻¹·(WC³·height⁻¹)⁻¹) 某些CVD 風險死亡率關聯顯示顯著增強趨勢。

The main findings in this study are that all models of VO₂max scaled to different body measurements, both in the full sample and in the restricted sample, are associated with lower CVD risk and all-cause mortality. In the full sample analyses, model 1 (L·min⁻¹) and model 5 (mL·min⁻¹·height⁻²) had less steep risk associations per increased deciles compared with reference model 2 (mL·min⁻¹·kg⁻¹) for both CVD risk and all-cause mortality. This was seen in all subgroups for CVD risk, and in men and in those younger than 50 years for all-cause mortality. In the restricted sample, including scaling models with WC, there was an additional trend towards a significantly stronger association for model 7 (mL·min⁻¹·WC⁻²) and model 8 (mL·min⁻¹·(WC³·height⁻¹)⁻¹) in some subgroups for CVD risk and all-cause mortality.

我們結果顯示,除了模型 1 5 關聯性弱,以及模型 7 8 部分顯示關聯性趨勢外,這裡檢查所有模型血管疾病風險死亡率關聯上,模型 2 相比顯示差異,即使某些 p 顯著的。模型 1(L·min⁻¹)通常顯示血管疾病死亡率關聯性可以理解的,因為模型包含任何身體測量數據。文獻對於哪種體重指數最適合 VO₂max 功率函數縮放持續不一致,促使VO₂max(mL·min⁻¹·kg)簡單比率縮放持續使用,幾乎可以視為一種標準方法。儘管存在這種不一致,我們仍然使用 mL·min⁻¹·kg 作為標準方法比較其他模型。令人驚訝的是,我們結果部分確認簡單比率縮放可能是足夠的,儘管符合理論。Heil 人的觀點相反,他們建議停止使用 VO₂ 峰值簡單比率縮放,改用介於 0.65 0.75 之間體重指數。然而,我們研究關注的是不同縮放模型血管疾病(CVD)發生死亡風險關聯,大多數先前研究研究心肺表現相關方面。可能解釋研究模型之間顯著差異,因為已知 VO₂max 水平CVD 發生死亡率有關。因此,所有模型包含 VO₂max 可能足以抵消模型不同身體測量影響,包括傳統比率縮放。然而,不能解釋為什麼模型 5(mL·min⁻¹·height⁻²)模型 2 相比,通常顯示CVD 發生死亡率關聯。文獻報導許多不同可行縮放指數可能是由於這些研究使用樣本致。我們研究中的樣本因此可能是未能找到類似差異另一原因。

Our results show that all the models examined here, except for model 1 and 5 that had a weaker association, and models 7 and 8 that partly had a trend of a stronger association, showed small differences in associations to CVD risk and all-cause mortality as compared with model 2 even if some p values were significant. That model 1 (L·min⁻¹) generally showed a weaker association to CVD and all-cause mortality is understandable as no body measurements were included in the model. The continual lack of agreement in the literature as to which body mass exponent is best for power function scaling of VO₂max has fuelled the continued use of the simple ratio scaling of VO₂max (mL·min⁻¹·kg) which can almost be considered a criterion method. In spite of this lack of agreement, we used mL·min⁻¹·kg as the criterion method to compare the other models with. Surprisingly our results partly confirm that the simple ratio scaling may be adequate to use in spite of it not adhering to the dimensional theory. This is contrary to Heil and others who suggest that the use of the simple ratio scaling of VO₂peak values should be discontinued in favour of body mass power exponents to powers between 0.65 and 0.75. However, our study concerns the use of different models of scaling in association to incidence of CVD and all-cause mortality, whereas most previous studies have studied performance-related aspects of cardiorespiratory fitness. This could account for the small, if significant, differences between the models in this study as VO₂max levels are known to be associated to incidence of CVD and all-cause mortality. Thus just including VO₂max in all the models may be enough to counteract the effect of the different body measurements in the models, including the traditional ratio scaling. However, this does not explain why model 5 (mL·min⁻¹·height⁻²) generally showed a weaker association to CVD incidence and all-cause mortality rate compared with model 2. The many different viable scaling exponents that have been reported in the literature concerning allometric scaling could also be due to the small sample sizes used in these studies. The large sample size in our study could therefore be another reason for not finding similar differences.

兩項先前研究評估健康相關不同縮放模型。Imboden 顯示,VO₂ 峰值血管疾病風險以及死亡率之間存在類似反向關係,並且死亡率標準化脂肪質量總體時,關係更為強烈。不幸的是,我們無法脂肪質量作為模型納入,因為我們沒有相關數據。大多數臨床環境中,脂肪質量測量比例腰圍更難獲得。雖然可以使用體重身高測量計算,有效性較低。未來研究評估脂肪質量作為 VO₂max 縮放身體測量可能附加解釋。

Two previous studies have evaluated different scaling models in association with health-related aspects. Imboden et al showed a similar inverse relationship between VO₂peak and CVD risk as well as all-cause mortality scaled to both total body mass and fat-free mass, but with a stronger relationship when normalising to fat-free mass rather than total body mass for all-cause mortality. Unfortunately, we were not able to include scaling to fat-free mass as a model as we had no data for it. Fat-free mass is also a more difficult measurement to obtain than, for example, WC in most clinical environments. It might be calculated using weight and height measurements, however, with low validity. The possible added explanation of fat-free mass as a body measure for scaling of VO₂max should be evaluated in future studies.

模型 5(mL·min⁻¹·身高⁻²)血管疾病(CVD)風險關聯陡峭發現,以及模型 7(mL·min⁻¹·腰圍⁻²)模型 8(mL·min⁻¹·(腰圍³·身高⁻¹)⁻¹)CVD 風險關聯趨勢陡峭,進一步討論。模型 5 唯一包含身高作為身體測量模型。顯然,並未包含體重腰圍測量那樣有效地區個體,可能表明(腹部)超重肥胖。先前研究顯示,心肺體脂肪CVD 風險以及死亡率有著強烈關聯,那些肥胖不健康風險最高。意味著納入兩項測量可能進一步區分 CVD 風險個體重要。目前分析限制樣本分析包含 391 CVD 病例(總數0.6%),因此未來分析納入更多 CVD 病例可能會提供顯著關聯。

The findings of less steep CVD risk association of model 5 (mL·min⁻¹·height⁻²) and a trend of more steep CVD risk association of model 7 (mL·min⁻¹·WC⁻²) and 8 (mL·min⁻¹·(WC³·height⁻¹)⁻¹) should be further discussed. Model 5 was the only model that included only height as a body measurement. Evidently, this did not discriminate individuals as powerfully as when including measurements of either body mass or WC for CVD risk assessment, which in turn might indicate (abdominal) overweight or obesity. Previous research has shown that both cardiorespiratory fitness and body fatness are strongly associated to CVD risk as well as all-cause mortality, where those being obese and unfit are most at risk. This implies that including both these measurements may be of importance to further discriminate individuals for CVD risk. The present analyses included only 391 CVD cases in the restricted sample analyses (0.6% of total n), and hence inclusion of more CVD cases in future analyses may provide significant associations.

優勢與劣勢 Strengths and weaknesses

這項研究的一個優勢是樣本大小。以往的研究可能因為使用的小樣本而顯示出更多的分歧結果。我們樣本的異質性也是一個優勢,因為它反映了正常人口。潛在的弱點是該隊列可能略具選擇性,因為參加 HPA 是自願的。然而,隊列的大小和多樣性會削弱任何選擇性,以及 VO₂max 水平與在瑞典進行的其他人口研究的相似性。另一個可能的弱點是 VO₂max 是使用標準化的亞最大 Åstrand 自行車測功機測試估算的。然而,在這個主要由非運動員組成的大型人群中,直接測量 VO₂max 並不可行。

A strength of this study is the sample size. Previous studies may have shown more diverging results due to the small samples they used. The heterogeneity of our sample is also a strength as it mirrors a normal population. A potential weakness is that the cohort may be slightly selective, as participation in the HPA was voluntary. However, the size and diversity of the cohort would weaken any selectivity, as well as the similarity of VO₂max levels to other population studies conducted in Sweden. Another possible weakness is that VO₂max was estimated using the standardised submaximal Åstrand cycle ergometer test. It would not, however, have been feasible to measure VO₂max directly in this large and mainly non-athletic population.

另一個限制是,VO₂max 與心血管疾病 (CVD) 發生率及全因死亡風險之間的關聯依賴於許多其他風險因素,如肥胖、血脂異常、高血壓。我們選擇僅包括年齡和性別,因為我們的數據中其他風險因素的數量有限。

A further limitation is that the association between VO₂max and incidence of CVD and all-cause mortality risk is dependent on many other risk factors such as obesity, dyslipidaemia, hypertension. We chose to only include age and sex as we had a limited amount of other risk factors in our data.

結論 Conclusions

儘管 VO₂max 體重簡單比率縮放並未遵循理論,我們結果顯示血管疾病(CVD)死亡率關聯性其他模型相似,這些模型加入不同身體尺寸符合理論。然而,身高作為縮放身體測量顯示CVD 風險關聯性弱,標準模型 2(mL·min⁻¹·kg⁻¹)相比。腰圍(WC)作為縮放身體測量顯示CVD 風險關聯性增強趨勢,模型 2 相比。一般人群中,身體活動VO₂max 處於水平時,可能會加速慢性疾病脆弱性,因此評估活動水平VO₂max 臨床具有高度相關性。研究臨床實踐如何考慮 VO₂max 體內尺寸差異CVD 發病率死亡率關聯提供新的重要知識。然而,未來需要進行不同結果研究進一步澄清這一點。

In spite of the simple ratio scaling of VO₂max to body mass not following the dimensional theory, our results showed that it was associated to CVD and all-cause mortality in a similar way to the other models where varying body dimensions were added to comply with the dimensional theory. However, including only height as a body measurement for scaling showed a weaker association to CVD risk compared with the criterion model 2 (mL·min⁻¹·kg⁻¹). Inclusion of WC as body measurement for scaling showed a tendency for a stronger association to CVD risk in comparison to model 2. In times of low physical activity and VO₂max in the general population, which may potentially accelerate vulnerability for chronic disease, it is highly clinically relevant to evaluate activity levels and VO₂max. The present study adds new important knowledge of how clinical practices may consider intraindividual size differences in VO₂max for association to CVD incidence and all-cause mortality. However, future studies with different outcomes are required to clarify this further.

參考文獻 References

  1. Harber MP, Kaminsky LA, Arena R, et al. 心肺適能對全因及特定疾病死亡率的影響:自 2009 年以來的進展。Prog Cardiovasc Dis 2017; 60:11–20.
    Harber MP, Kaminsky LA, Arena R, et al. Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009. Prog Cardiovasc Dis 2017; 60:11–20.
     
  2. closeEkblom-Bak E, Ekblom B, Söderling J 等。266,109 名成人中,心肺適能、心血管疾病發病率和全因死亡率之間的性別和年齡特異性關聯。預防醫學 2019; 127。
    Ekblom-Bak E, Ekblom B, Söderling J, et al. Sex- and age-specific associations between cardiorespiratory fitness, CVD morbidity and all-cause mortality in 266.109 adults. Prev Med 2019; 127.
     
  3. closeBatterham AM, George KP, Whyte G 等。根據身體尺寸縮放心臟結構數據:理論、實踐和問題的回顧。國際運動醫學雜誌 1999; 20:495–502。
    Batterham AM, George KP, Whyte G, et al. Scaling cardiac structural data by body dimensions: a review of theory, practice, and problems. Int J Sports Med 1999; 20:495–502.
     
  4. closeBuresh R, Berg K. 將氧氣攝取量與身體大小進行比例調整及其幾個實際應用。力量與體能研究雜誌 2002; 16:461–5.
    Buresh R, Berg K. Scaling oxygen uptake to body size and several practical applications. J Strength Cond Res 2002; 16:461–5.
     
  5. closeBergh U, Sjödin B, Forsberg A 等。人體在跑步過程中體重與氧氣攝取量之間的關係。醫學科學運動與運動 1991; 23:205???211–11.
    Bergh U, Sjödin B, Forsberg A, et al. The relationship between body mass and oxygen uptake during running in humans. Med Sci Sports Exerc 1991; 23:205???211–11.
     
  6. closeMcCann DJ, Adams WC. 一個用於標準化靜息 VO(2)以考量身體大小差異的理論。醫學科學運動與運動 2002; 34:1382–90。
    McCann DJ, Adams WC. A theory for normalizing resting .VO(2) for differences in body size. Med Sci Sports Exerc 2002; 34:1382–90.
     
  7. closeAstrand PO, Rodahl K. 工作生理學教科書:運動的生理基礎。麥格勞-希爾 1986 年;
    Astrand PO, Rodahl K. Textbook of work physiology: physiological bases of exercise. McGraw Hill 1986;
     
  8. closeHeil DP. 20 至 79 歲成年人峰值氧氣攝取的體重質量縮放。醫學科學運動與運動 1997 年;29:1602–8。
    Heil DP. Body mass scaling of peak oxygen uptake in 20- to 79-yr-old adults. Med Sci Sports Exerc 1997; 29:1602–8.
     
  9. closeLolli L, Batterham AM, Weston KL 等。超過 6500 名人類的最大氧氣攝取量的大小指數:系統性回顧與統合分析。運動醫學 2017; 47:1405–19。
    Lolli L, Batterham AM, Weston KL, et al. Size exponents for scaling maximal oxygen uptake in over 6500 humans: a systematic review and meta-analysis. Sports Med 2017; 47:1405–19.
     
  10. closeJanssen I, Katzmarzyk PT, Ross R 等。腰圍而非體重指數解釋了與肥胖相關的健康風險。美國臨床營養學雜誌 2004; 79:379–84。
    Janssen I, Katzmarzyk PT, Ross R, et al. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr 2004; 79:379–84.
     
  11. closeLarsson B, Svärdsudd K, Welin L 等。腹部脂肪組織分佈、肥胖與心血管疾病及死亡風險:對 1913 年出生男性參與者的 13 年追蹤研究。英國醫學期刊 1984; 288:1401–4.
    Larsson B, Svärdsudd K, Welin L, et al. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J 1984; 288:1401–4.
     
  12. closeChristou DD, Gentile CL, DeSouza CA 等人。肥胖是健康男性心血管疾病風險因素輪廓的更好預測指標,而非有氧健身。循環 2005; 111:1904–14。
    Christou DD, Gentile CL, DeSouza CA, et al. Fatness is a better predictor of cardiovascular disease risk factor profile than aerobic fitness in healthy men. Circulation 2005; 111:1904–14.
     
  13. closeImboden MT, Kaminsky LA, Peterman JE 等。根據無脂肪質量標準化的心肺適能與死亡風險。醫學科學運動與鍛煉 2020; 52:1532-1537。
    Imboden MT, Kaminsky LA, Peterman JE, et al. Cardiorespiratory fitness normalized to fat-free mass and mortality risk. Med Sci Sports Exerc 2020; 52:1532-1537.
     
  14. closeAndersson G。運動對病假和感知健康的重要性。醫學論文。林雪平大學 1987;
    Andersson G. The importance of exercise for sick leave and perceived health. Medical dissertation. Linköping University 1987;
     
  15. closeÅstrand I. 男性和女性的有氧工作能力,特別是年齡的參考。Acta Physiol Scand Suppl 1960; 49:1–92.
    Åstrand I. Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand Suppl 1960; 49:1–92.
     
  16. closeEkblom B, Engström L-M, Ekblom O 等。瑞典成年人身體健康的世代趨勢。Scand J Med Sci Sports 2007; 17:267–73.
    Ekblom B, Engström L-M, Ekblom O, et al. Secular trends of physical fitness in Swedish adults. Scand J Med Sci Sports 2007; 17:267–73.
     
  17. closeBjörkman F, Ekblom-Bak E, Ekblom Örjan, 等人。修訂版 Ekblom Bak 腳踏車測試在成人中的有效性。歐洲應用生理學雜誌 2016; 116:1627–38。
    Björkman F, Ekblom-Bak E, Ekblom Örjan, et al. Validity of the revised Ekblom Bak cycle ergometer test in adults. Eur J Appl Physiol 2016; 116:1627–38.
     
  18. close團隊 RC。R:一種用於統計計算的語言和環境。奧地利維也納,R 統計計算基金會 2020;
    Team RC. R: a language and an environment for statistical computing. Vienna, AustriaR Foundation for Statistical Computing 2020;
     
  19. closeHaibe-Kains B, Desmedt C, Sotiriou C 等。基於微陣列數據的乳腺癌預後模型比較研究:單一基因是否勝過所有模型?生物資訊學 2008;24:2200–8。
    Haibe-Kains B, Desmedt C, Sotiriou C, et al. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics 2008; 24:2200–8.
     
  20. closeSchröder MS, Culhane AC, Quackenbush J 等人。survcomp:一個用於生存模型性能評估和比較的 R/Bioconductor 套件。生物資訊學 2011;27:3206–8。
    Schröder MS, Culhane AC, Quackenbush J, et al. survcomp: an R/Bioconductor package for performance assessment and comparison of survival models. Bioinformatics 2011; 27:3206–8.
     
  21. closeWelsman JR, Armstrong N, Nevill AM 等人。針對身體大小差異進行峰值 VO2 的縮放。醫學科學運動與鍛煉 1996;28:259–65。
    Welsman JR, Armstrong N, Nevill AM, et al. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc 1996; 28:259–65.
     
  22. closeNevill AM, Bate S, Holder RL 等。建模生理和人體測量變數,這些變數隨著身體大小和其他混雜變數而變化。美國人類生物學雜誌 2005; 41:141–53。
    Nevill AM, Bate S, Holder RL, et al. Modeling physiological and anthropometric variables known to vary with body size and other confounding variables. Am J Phys Anthropol 2005; 41:141–53.
     
  23. closeTanner JM. 體重和表面積標準的謬誤及其與虛假相關的關係。應用生理學雜誌 1949; 2:1–15。
    Tanner JM. Fallacy of per-weight and per-surface area Standards, and their relation to spurious correlation. J Appl Physiol 1949; 2:1–15.
     
  24. closeTurley KR, Stanforth PR, Rankinen T 等人。縮放亞最大運動心輸出量和每搏量:遺產家庭研究。國際運動醫學雜誌 2006; 27:993–9。
    Turley KR, Stanforth PR, Rankinen T, et al. Scaling submaximal exercise cardiac output and stroke volume: the heritage family study. Int J Sports Med 2006; 27:993–9.
     
  25. closeRogers DM, Olson BL, Wilmore JH 等人。縮放兒童和成人之間的 VO2 與身體大小的關係。應用生理學雜誌 1995; 79:958–67。
    Rogers DM, Olson BL, Wilmore JH, et al. Scaling for the VO2-to-body size relationship among children and adults. J Appl Physiol 1995; 79:958–67.
     
  26. closeMyers J, McAuley P, Lavie CJ 等人。身體活動和心肺適能作為心血管風險的主要指標:它們對健康狀態的獨立和交織的重要性。Prog Cardiovasc Dis 2015; 57:306–14.
    Myers J, McAuley P, Lavie CJ, et al. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis 2015; 57:306–14.
     
  27. closeLavie CJ, Carbone S, Kachur S 等。身體活動、運動和健康狀況對肥胖相關的發病率和死亡率的影響。當前運動醫學報告 2019; 18:292–8。
    Lavie CJ, Carbone S, Kachur S, et al. Effects of physical activity, exercise, and fitness on obesity-related morbidity and mortality. Curr Sports Med Rep 2019; 18:292–8.
     
  28. closeOktay AA, Lavie CJ, Kokkinos PF 等人。心肺適能與肥胖及心血管疾病中的肥胖悖論的相互作用。Prog Cardiovasc Dis 2017; 60:30–44。
    Oktay AA, Lavie CJ, Kokkinos PF, et al. The interaction of cardiorespiratory fitness with obesity and the obesity paradox in cardiovascular disease. Prog Cardiovasc Dis 2017; 60:30–44.
     
  29. closeBarry VW, Baruth M, Beets MW 等人。健身與肥胖對全因死亡率的影響:一項綜合分析。Prog Cardiovasc Dis 2014; 56:382–90。
    Barry VW, Baruth M, Beets MW, et al. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis 2014; 56:382–90.
     
  30. closeEkblom-Bak E, Ekblom Örjan, Andersson G 等人。1995 年至 2017 年瑞典勞動力的心肺適能下降。斯堪的納維亞醫學與運動科學雜誌 2019; 29:232–9。
    Ekblom-Bak E, Ekblom Örjan, Andersson G, et al. Decline in cardiorespiratory fitness in the Swedish working force between 1995 and 2017. Scand J Med Sci Sports 2019; 29:232–9.